8 research outputs found

    Characterization of the SPIRITAS:A Disposable Sampling Setup for Volatile Organic Compound Collection and Analysis

    Get PDF
    Analyzing exhaled breath for volatile organic compounds (VOCs) using thermal desorption–gas chromatography–mass spectrometry (TD-GC-MS) offers a non-invasive diagnostic approach for various diseases. Despite its promise, the method faces challenges like sampling heterogeneity and high costs. Following the European Respiratory Society’s advocacy for methodological standardization, we developed the SPIRITAS (Standardized Product for Inexpensive Respiratory InvesTigation: A breath Sampler), a low-cost, disposable breath sampler. This study evaluates the SPIRITAS’s effectiveness in detecting targeted VOCs. We tested the SPIRITAS using the Peppermint Experiment, a standardized protocol that allows for comparison between different breath sampling and analytical practices by assessing the ability to detect five peppermint-specific VOCs after ingestion of a 200-milligram peppermint oil capsule. We included ten subjects and performed six breath samples per participant, including a baseline measurement taken before ingestion. We used the Wilcoxon signed-rank test to evaluate whether baseline values were significantly lower than the peak values of the targeted VOCs. Additionally, we conducted an experiment utilizing humidified medical-grade air to identify any VOCs attributable to the SPIRITAS setup itself. Results showed successful detection of four out of five targeted “peppermint-associated” VOCs: alpha-pinene (p ≀ 0.01), beta-pinene (p ≀ 0.01), menthone (p = 0.01), and menthol (p = 0.02), indicating significant differences between the baseline and peak values in the volunteers’ breath. However, detection of eucalyptol was inconsistent. In addition, we identified 16 VOCs that were released by the SPIRITAS, one of which remains unidentified. Our findings underscore the SPIRITAS’s potential for clinical applications, paving the way for broader biomarker research. The combination of ease of use, low cost, reduced risk of contamination, and standardization makes SPIRITAS very suitable for large-scale international studies. Furthermore, we have demonstrated the SPIRITAS’s effectiveness in detecting specific VOCs and identified 16 compounds originating from the SPIRITAS, ensuring that these compounds would not be mis-qualified as potential biomarkers in future clinical studies.</p

    Systematic review on quality control for drug management programs: Is quality reported in the literature?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Maintaining quality of care while managing limited healthcare resources is an ongoing challenge in healthcare. The objective of this study was to evaluate how the impact of drug management programs is reported in the literature and to identify potentially existing quality standards.</p> <p>Methods</p> <p>This analysis relates to the published research on the impact of drug management on economic, clinical, or humanistic outcomes in managed care, indemnity insurance, VA, or Medicaid in the USA published between 1996 and 2007. Included articles were systematically analyzed for study objective, study endpoints, and drug management type. They were further categorized by drug management tool, primary objective, and study endpoints.</p> <p>Results</p> <p>None of the 76 included publications assessed the overall quality of drug management tools. The impact of 9 different drug management tools used alone or in combination was studied in pharmacy claims, medical claims, electronic medical records or survey data from either patient, plan or provider perspective using an average of 2.1 of 11 possible endpoints. A total of 68% of the studies reported the impact on plan focused endpoints, while the clinical, the patient or the provider perspective were studied to a much lower degree (45%, 42% and 12% of the studies). Health outcomes were only accounted for in 9.2% of the studies.</p> <p>Conclusion</p> <p>Comprehensive assessment of quality considering plan, patient and clinical outcomes is not yet applied. There is no defined quality standard. Benchmarks including health outcomes should be determined and used to improve the overall clinical and economic effectiveness of drug management programs.</p

    Current Challenges and Potential Opportunities for the Pharmaceutical Sciences to Make Global Impact: An FIP Perspective

    No full text
    The chairs of each of the 8 Special Interest Groups of the Board of Pharmaceutical Sciences of the International Pharmaceutical Federation have compiled opinions with regard to major challenges for the pharmaceutical sciences over the next 5-10 years. Areas covered are drug design and discovery, natural products, formulation design and pharmaceutical technology, pharmacokinetics/pharmacodynamics and systems pharmacology, translational and personalized medicine, biotechnology, analytical sciences and quality control, and regulatory scienc

    BMP Receptor Inhibition Enhances Tissue Repair in Endoglin Heterozygous Mice

    No full text
    Hereditary hemorrhagic telangiectasia type 1 (HHT1) is a severe vascular disorder caused by mutations in the TGFÎČ/BMP co-receptor endoglin. Endoglin haploinsufficiency results in vascular malformations and impaired neoangiogenesis. Furthermore, HHT1 patients display an impaired immune response. To date it is not fully understood how endoglin haploinsufficient immune cells contribute to HHT1 pathology. Therefore, we investigated the immune response during tissue repair in Eng+/− mice, a model for HHT1. Eng+/− mice exhibited prolonged infiltration of macrophages after experimentally induced myocardial infarction. Moreover, there was an increased number of inflammatory M1-like macrophages (Ly6Chigh/CD206−) at the expense of reparative M2-like macrophages (Ly6Clow/CD206+). Interestingly, HHT1 patients also showed an increased number of inflammatory macrophages. In vitro analysis revealed that TGFÎČ-induced differentiation of Eng+/− monocytes into M2-like macrophages was blunted. Inhibiting BMP signaling by treating monocytes with LDN-193189 normalized their differentiation. Finally, LDN treatment improved heart function after MI and enhanced vascularization in both wild type and Eng+/− mice. The beneficial effect of LDN was also observed in the hind limb ischemia model. While blood flow recovery was hampered in vehicle-treated animals, LDN treatment improved tissue perfusion recovery in Eng+/− mice. In conclusion, BMPR kinase inhibition restored HHT1 macrophage imbalance in vitro and improved tissue repair after ischemic injury in Eng+/− mice

    SCIAMACHY In-flight Instrument Performance

    No full text
    On 1st of March 2002 ENVISAT with SCIAMACHY on-board was launched successfully in a sun-synchronous polar orbit. SCIAMACHY is a passive remote sensing instrument, which measures solar back scattered and reflected light from the atmosphere in nadir and limb viewing geometries during the majority of an orbit. In addition solar and lunar occultation measurements will be performed regularly. Measurements are made with moderate spectral resolution (0.2 1.5 nm) simultaneously in eight spectral channels covering the spectral region between 240 and 2380 nm. After a few weeks of out gassing SCIAMACHY was switched on successfully and a complex procedure starts to check out the instrument in orbit and tune it to the optimum in-flight performance. Solar and atmospheric spectra were already taken since the begin of April 2002. During SODAP and commissioning phase the instrument functional and optical performance was verified and instrument calibration activities were started. These activities revealed that SCIAMACHY is performing well and as expected from on-ground calibration, with only on exception: the water ice condensation in channels 7 and 8. Nevertheless for this problem countermeasures are identified. This paper summarizes the status of SCIAMACHY after 6 month in orbit, with a major focus on the optical and pointing performance

    Impaired recruitment of HHT-1 mononuclear cells to the ischaemic heart is due to an altered CXCR4/CD26 balance

    No full text
    Aims Mononuclear cells (MNCs) from patients with hereditary haemorrhagic telangiectasia type 1 (HHT1), a genetic disorder caused by mutations in endoglin, show a reduced ability to home to infarcted mouse myocardium. Stromal cell-derived factor-1a (SDF-1 alpha) and the chemokine receptor CXCR4 are crucial for homing and negatively influenced by CD26. The aim of this study was to gain insight into the impaired homing of HHT1-MNCs. Methods and results CXCR4 and CD26 expression on MNCs was determined by flow cytometry. Transwell migration to SDF-1 alpha was used to analyse in vitro migration. Experimentally induced myocardial infarction in mice, followed by tail vein injection of MNCs, was applied to study homing in vivo. HHT1-MNCs expressed elevated levels of CXCR4, but this was counterbalanced by high levels of CD26, resulting in decreased migration towards an SDF-1 alpha gradient in vitro. Migration was enhanced by inhibiting CD26 with Diprotin-A. While MNCs from healthy controls responded to transforming growth factor-beta stimulation by increasing CXCR4 and lowering CD26 expression levels, HHT1-MNCs did not react as efficiently: in particular, CD26 expression remained high. Inhibiting CD26 on MNCs increased the homing of human cells into the infarcted mouse heart. Interestingly, the defect in homing of HHT1-MNCs was restored by pre-incubating the HHT1-MNCs with Diprotin-A before injection into the tail vein. Conclusion We show that a decreased homing of HHT1-MNCs is caused by an impaired ability of the cells to respond to SDF-1 alpha. Our results suggest that modulating CD26 levels using inhibitors like Diprotin-A can restore homing in cases where increased expression of CD26 contributes to the underlying pathological mechanism.Signal transduction in aging related disease
    corecore