6 research outputs found

    Table2_FACILITATE: A real-world, multicenter, prospective study investigating the utility of a rapid, fully automated real-time PCR assay versus local reference methods for detecting epidermal growth factor receptor variants in NSCLC.DOCX

    No full text
    Accurate testing for epidermal growth factor receptor (EGFR) variants is essential for informing treatment decisions in non-small cell lung cancer (NSCLC). Automated diagnostic workflows may allow more streamlined initiation of targeted treatments, where appropriate, while comprehensive variant analysis is ongoing. FACILITATE, a real-world, prospective, multicenter, European study, evaluated performance and analytical turnaround time of the Idylla™ EGFR Mutation Test compared with local reference methods. Sixteen sites obtained formalin-fixed paraffin-embedded biopsy samples with ≥ 10% neoplastic cells from patients with NSCLC. Consecutive 5 μm sections from patient samples were tested for clinically relevant NSCLC-associated EGFR variants using the Idylla™ EGFR Mutation Test and local reference methods; performance (concordance) and analytical turnaround time were compared. Between January 2019 and November 2020, 1,474 parallel analyses were conducted. Overall percentage agreement was 97.7% [n = 1,418; 95% confidence interval (CI): 96.8–98.3], positive agreement, 87.4% (n = 182; 95% CI: 81.8–91.4) and negative agreement, 99.2% (n = 1,236; 95% CI: 98.5–99.6). There were 38 (2.6%) discordant cases. Ninety percent of results were returned with an analytical turnaround time of within 1 week using the Idylla™ EGFR Mutation Test versus ∼22 days using reference methods. The Idylla™ EGFR Mutation Test performed well versus local methods and had shorter analytical turnaround time. The Idylla™ EGFR Mutation Test can thus support application of personalized medicine in NSCLC.</p

    Table1_FACILITATE: A real-world, multicenter, prospective study investigating the utility of a rapid, fully automated real-time PCR assay versus local reference methods for detecting epidermal growth factor receptor variants in NSCLC.DOCX

    No full text
    Accurate testing for epidermal growth factor receptor (EGFR) variants is essential for informing treatment decisions in non-small cell lung cancer (NSCLC). Automated diagnostic workflows may allow more streamlined initiation of targeted treatments, where appropriate, while comprehensive variant analysis is ongoing. FACILITATE, a real-world, prospective, multicenter, European study, evaluated performance and analytical turnaround time of the Idylla™ EGFR Mutation Test compared with local reference methods. Sixteen sites obtained formalin-fixed paraffin-embedded biopsy samples with ≥ 10% neoplastic cells from patients with NSCLC. Consecutive 5 μm sections from patient samples were tested for clinically relevant NSCLC-associated EGFR variants using the Idylla™ EGFR Mutation Test and local reference methods; performance (concordance) and analytical turnaround time were compared. Between January 2019 and November 2020, 1,474 parallel analyses were conducted. Overall percentage agreement was 97.7% [n = 1,418; 95% confidence interval (CI): 96.8–98.3], positive agreement, 87.4% (n = 182; 95% CI: 81.8–91.4) and negative agreement, 99.2% (n = 1,236; 95% CI: 98.5–99.6). There were 38 (2.6%) discordant cases. Ninety percent of results were returned with an analytical turnaround time of within 1 week using the Idylla™ EGFR Mutation Test versus ∼22 days using reference methods. The Idylla™ EGFR Mutation Test performed well versus local methods and had shorter analytical turnaround time. The Idylla™ EGFR Mutation Test can thus support application of personalized medicine in NSCLC.</p

    Table3_FACILITATE: A real-world, multicenter, prospective study investigating the utility of a rapid, fully automated real-time PCR assay versus local reference methods for detecting epidermal growth factor receptor variants in NSCLC.DOCX

    No full text
    Accurate testing for epidermal growth factor receptor (EGFR) variants is essential for informing treatment decisions in non-small cell lung cancer (NSCLC). Automated diagnostic workflows may allow more streamlined initiation of targeted treatments, where appropriate, while comprehensive variant analysis is ongoing. FACILITATE, a real-world, prospective, multicenter, European study, evaluated performance and analytical turnaround time of the Idylla™ EGFR Mutation Test compared with local reference methods. Sixteen sites obtained formalin-fixed paraffin-embedded biopsy samples with ≥ 10% neoplastic cells from patients with NSCLC. Consecutive 5 μm sections from patient samples were tested for clinically relevant NSCLC-associated EGFR variants using the Idylla™ EGFR Mutation Test and local reference methods; performance (concordance) and analytical turnaround time were compared. Between January 2019 and November 2020, 1,474 parallel analyses were conducted. Overall percentage agreement was 97.7% [n = 1,418; 95% confidence interval (CI): 96.8–98.3], positive agreement, 87.4% (n = 182; 95% CI: 81.8–91.4) and negative agreement, 99.2% (n = 1,236; 95% CI: 98.5–99.6). There were 38 (2.6%) discordant cases. Ninety percent of results were returned with an analytical turnaround time of within 1 week using the Idylla™ EGFR Mutation Test versus ∼22 days using reference methods. The Idylla™ EGFR Mutation Test performed well versus local methods and had shorter analytical turnaround time. The Idylla™ EGFR Mutation Test can thus support application of personalized medicine in NSCLC.</p

    Improved tumour detection by gastrin receptor scintigraphy in patients with metastasised medullary thyroid carcinoma.

    No full text
    Contains fulltext : 49478.pdf (publisher's version ) (Closed access)PURPOSE: Radiopeptide imaging is a valuable imaging method in the management of patients with neuroendocrine tumours (NET). To determine the clinical performance of gastrin receptor scintigraphy (GRS), it was compared with somatostatin receptor scintigraphy (SRS), computed tomography (CT) and (18)F-FDG positron emission tomography (PET) in patients with metastasised/recurrent medullary thyroid carcinoma (MTC). METHODS: Twenty-seven consecutive patients underwent imaging with GRS, SRS (19 patients), CT and PET (26 patients). GRS and SRS were compared with respect to tumour detection and uptake. CT, PET, magnetic resonance imaging (MRI), ultrasound (US) and follow-up were used for verification of findings. In addition, GRS, CT and PET were directly compared with each other to determine which method performs best. RESULTS: Nineteen patients underwent both GRS and SRS. Among these, GRS showed a tumour detection rate of 94.2% as compared to 40.7% for SRS [mean number of tumour sites (+/-SD) and 95% confidence intervals (CI): GRS 4.3+/-3.1/2.8-5.7, SRS 1.8+/-1.6/1.1-2.6]. In 26 patients, GRS, CT and PET were compared. Here, GRS showed a tumour detection rate of 87.3% (CT 76.1%, PET 67.2%; mean number of tumour sites and 95% CI: GRS 4.5+/-4.0/2.9-6.1, CT 3.9+/-3.5/2.5-5.3, PET 3.5+/-3.3/2.1-4.8). If GRS and CT were combined, they were able to detect 96.7% of areas of tumour involvement. CONCLUSION: GRS had a higher tumour detection rate than SRS and PET in our study. GRS in combination with CT was most effective in the detection of metastatic MTC
    corecore