50 research outputs found

    Deformation transfer survey

    Get PDF
    Deformation transfer is a type of retargeting method that operates directly on the mesh and, by doing so, enables reuse of animation without setting up character rigs and a mapping between the source and target geometries. Deformation transfer can potentially reduce the costs of animation and give studios a competitive edge when keeping up with the latest computer animation technology. Unfortunately, deformation transfer has limitations and is yet to become standard practice in the industry. This survey starts by introducing Sumner and Popović’s [18] seminal work and highlights key issues for industry settings. We then review related work in sections, organized by these key issues. After surveying related work, we discuss how their advances open the door to several practical applications of deformation transfer. To conclude, we highlight areas of future work

    Saliency detection for large-scale mesh decimation

    Get PDF
    Highly complex and dense models of 3D objects have recently become indispensable in digital industries. Mesh decimation then plays a crucial role in the production pipeline to efficiently get visually convincing yet compact expressions of complex meshes. However, the current pipeline typically does not allow artists control the decimation process, just a simplification rate. Thus a preferred approach in production settings splits the process into a first pass of saliency detection highlighting areas of greater detail, and allowing artists to iterate until satisfied before simplifying the model. We propose a novel, efficient multi-scale method to compute mesh saliency at coarse and finer scales, based on fast mesh entropy of local surface measurements. Unlike previous approaches, we ensure a robust and straightforward calculation of mesh saliency even for densely tessellated models with millions of polygons. Moreover, we introduce a new adaptive subsampling and interpolation algorithm for saliency estimation. Our implementation achieves speedups of up to three orders of magnitude over prior approaches. Experimental results showcase its resilience to problem scenarios that efficiently scales up to process multi-million vertex meshes. Our evaluation with artists in the entertainment industry also demonstrates its applicability to real use-case scenarios

    Hair animation with collision detection

    No full text
    An efficient method is proposed for hair animation. The movement of hairs is modeled by simplified physical simulations. In particular the method can treat successfully collisions between hair and a human body or other objects, which provides realistic hair animation. The fast collision detection is achieved using cylindrical representation of the head and human body parts, despite a large number of hairs. The cylindrical representation allows collision detection to be performed by table look-up and interpolation, which assures that the computation time is independent of the complexity of the objects. A reaction constraint algorithm is also applied for the collision reaction to simulate inelastic contact. The efficiency of the method is well illustrated by the animation obtaine

    Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2005)

    No full text
    Two human motions can be linearly interpolated to produce a new motion, giving the animator control over the length of a jump, the speed of walking, or the height of a kick. Over the past ten years, this simple technique has been shown to produce surprisingly natural looking results. In this paper, we analyze the motions produced by this technique for physical correctness and suggest small modifications to the standard interpolation technique that in some circumstances will produce significantly more natural looking motion

    Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2005)

    No full text
    Flow motion on curved surfaces of arbitrary topology is an interesting visual effect but a complex dynamics to simulate. In this paper, we introduce a novel and effective way to model such dynamics. We propose a technique that adapts a recently emerged computational fluid dynamics (CFD) model, unstructured lattice Boltzmann model (Unstructured LBM), from the 2D unstructured meshes to the 3D surface meshes. Unlike previous methods in modeling flows on surfaces, which start from the macroscopic point of view and modify the Navier Stokes solvers for the curved surfaces, our method is based on the microscopic kinetic equations for discrete particle distribution functions. All computations on the surface mesh only involve the information within local neighborhoods. This model lends itself the following advantages: (i) simplicity and explicit parallelism in computation, (ii) great capability in handling complex interactions, such as the interactions between flow and boundaries and the interactions of multiple-component fluids; (iii) no need of global surface parameterization which may cause strong distortions; (iv) capability of being applied to meshes with arbitrary connectivity

    An Efficient Search Algorithm for Motion Data Using Weighted PCA Abstract

    No full text
    Good motion data is costly to create. Such an expense often makes the reuse of motion data through transformation and retargetting a more attractive option than creating new motion from scratch. Reuse requires the ability to search automatically and efficiently a growing corpus of motion data, which remains a difficult open problem. We present a method for quickly searching long, unsegmented motion clips for subregions that most closely match a short query clip. Our search algorithm is based on a weighted PCA-based pose representation that allows for flexible and efficient pose-to-pose distance calculations. We present our pose representation and the details of the search algorithm. We evaluate the performance of a prototype search application using both synthetic and captured motion data. Using these results, we propose ways to improve the application’s performance. The results inform a discussion of the algorithm’s good scalability characteristics. Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Animation 1

    Autonomous Pedestrians

    No full text
    We address the difficult open problem of emulating the rich complexity of real pedestrians in urban environments. Our artificial life approach integrates motor, perceptual, behavioral, and cognitive components within a model of pedestrians as individuals. Our comprehensive model features innovations in these components, as well as in their combination, yielding results of unprecedented fidelity and complexity for fully autonomous multi-human simulation in a large urban environment. We represent the environment using hierarchical data structures, which efficiently support the perceptual queries of the autonomous pedestrians that drive their behavioral responses and sustain their ability to plan their actions on local and global scales. Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Animation; I.6.8 [Simulation and Modeling]: Types of Simulation—Animation 1
    corecore