10 research outputs found

    Developing Standard Treatment Workflows—way to universal healthcare in India

    Get PDF
    Primary healthcare caters to nearly 70% of the population in India and provides treatment for approximately 80–90% of common conditions. To achieve universal health coverage (UHC), the Indian healthcare system is gearing up by initiating several schemes such as National Health Protection Scheme, Ayushman Bharat, Nutrition Supplementation Schemes, and Inderdhanush Schemes. The healthcare delivery system is facing challenges such as irrational use of medicines, over- and under-diagnosis, high out-of-pocket expenditure, lack of targeted attention to preventive and promotive health services, and poor referral mechanisms. Healthcare providers are unable to keep pace with the volume of growing new scientific evidence and rising healthcare costs as the literature is not published at the same pace. In addition, there is a lack of common standard treatment guidelines, workflows, and reference manuals from the Government of India. Indian Council of Medical Research in collaboration with the National Health Authority, Govt. of India, and the WHO India country office has developed Standard Treatment Workflows (STWs) with the objective to be utilized at various levels of healthcare starting from primary to tertiary level care. A systematic approach was adopted to formulate the STWs. An advisory committee was constituted for planning and oversight of the process. Specialty experts' group for each specialty comprised of clinicians working at government and private medical colleges and hospitals. The expert groups prioritized the topics through extensive literature searches and meeting with different stakeholders. Then, the contents of each STW were finalized in the form of single-pager infographics. These STWs were further reviewed by an editorial committee before publication. Presently, 125 STWs pertaining to 23 specialties have been developed. It needs to be ensured that STWs are implemented effectively at all levels and ensure quality healthcare at an affordable cost as part of UHC

    Synthesis and antimicrobial activity of 5-(2-aminothiazol-4-yl)-3, 4-dihydro-4-phenyl pyrimidin-2(1<i style="">H</i>)-one

    No full text
    1732-1737A series of hybrid 5-(2-aminothiazol-4-yl)-3,4-dihydro-4-phenyl pyrimidin-2(1H)-ones (ATDPP) are reported. Efficient cyclocondensation of appropriately substituted 5-(2-bromoacetyl)-3,4-dihydro-4-phenylpyrimidine-2(1H)-ones (BADPP) with thiourea in ethanol proceeds in high yield to furnish the corresponding ATDPPs. Dihydropyrimidine carboxylates (DHPMS) and their bromo derivatives are the key substrates for cyclocondensation. The ATDPPS revealed biological activity as antimicrobial and antifungal agents against S. aureus, P. aurogenosa, K. pneumonae and C. albicans.</i

    Band Gap Bowing at Nanoscale: Investigation of CdS<sub><i>x</i></sub>Se<sub>1–<i>x</i></sub> Alloy Quantum Dots through Cyclic Voltammetry and Density Functional Theory

    No full text
    The band gap bowing effect in oleic acid-stabilized CdS<sub><i>x</i></sub>Se<sub>1–<i>x</i></sub> alloy quantum dots (Q-dots) with varying composition has been studied experimentally by means of cyclic voltammetry and theoretically using density functional theory based calculations. Distinct cathodic and anodic peaks observed in the cyclic voltammograms of diffusing quantum dots alloy are attributed to the respective conduction and valence band edges. The quasi-particle gap values determined from voltammetric measurements are compared with interband transition peaks in UV–vis and PL spectra. Electronic structure for alloy Q-dots is determined computationally with projector augmented wave method for a particular size of dots. The band gap bowing is observed predominantly in the conduction band states. The bowing parameter determined experimentally (0.45 eV) has been found to be in good agreement with the one estimated from DFT (0.43 eV)
    corecore