65 research outputs found

    Nitrogen Starvation Differentially Influences Transcriptional and Uptake Rate Profiles in Roots of Two Maize Inbred Lines with Different NUE

    Get PDF
    Nitrogen use efficiency (NUE) of crops is estimated to be less than 50%, with a strong impact on environment and economy. Genotype-dependent ability to cope with N shortage has been only partially explored in maize and, in this context, the comparison of molecular responses of lines with different NUE is of particular interest in order to dissect the key elements underlying NUE. Changes in root transcriptome and NH4+/NO3- uptake rates during growth (after 1 and 4 days) without N were studied in high (Lo5) and low (T250) NUE maize inbred lines. Results suggests that only a small set of transcripts were commonly modulated in both lines in response to N starvation. However, in both lines, transcripts linked to anthocyanin biosynthesis and lateral root formation were positively affected. On the contrary, those involved in root elongation were downregulated. The main differences between the two lines reside in the ability to modulate the transcripts involved in the transport, distribution and assimilation of mineral nutrients. With regard to N mineral forms, only the Lo5 line responded to N starvation by increasing the NH4+ fluxes as supported by the upregulation of a transcript putatively involved in its transport

    The urease inhibitor NBPT negatively affects DUR3-mediated uptake and assimilation of urea in maize roots

    Get PDF
    Despite the widespread use of urease inhibitors in agriculture, little information is available on their effect on nitrogen (N) uptake and assimilation. Aim of this work was to study, at physiological and transcriptional level, the effects of N-(n-butyl) thiophosphoric triamide (NBPT) on urea nutrition in hydroponically grown maize plants. Presence of NBPT in the nutrient solution limited the capacity of plants to utilize urea as a N-source; this was shown by a decrease in urea uptake rate and 15N accumulation. Noteworthy, these negative effects were evident only when plants were fed with urea, as NBPT did not alter 15N accumulation in nitrate-fed plants. NBPT also impaired the growth of Arabidopsis plants when urea was used as N-source, while having no effect on plants grown with nitrate or ammonium. This response was related, at least in part, to a direct effect of NBPT on the high affinity urea transport system. Impact of NBPT on urea uptake was further evaluated using lines of Arabidopsis overexpressing ZmDUR3 and dur3-knockout; results suggest that not only transport but also urea assimilation could be compromised by the inhibitor. This hypothesis was reinforced by an over-accumulation of urea and a decrease in ammonium concentration in NBPT-treated plants. Furthermore, transcriptional analyses showed that in maize roots NBPT treatment severely impaired the expression of genes involved in the cytosolic pathway of ureic-N assimilation and ammonium transport. NBPT also limited the expression of a gene coding for a transcription factor highly induced by urea and possibly playing a crucial role in the regulation of its acquisition. This work provides evidence that NBPT can heavily interfere with urea nutrition in maize plants, limiting influx as well as the following assimilation pathway. \ua9 2015 Zanin, Tomasi, Zamboni, Varanini and Pinton

    Metal Interactions in the Ni Hyperaccumulating Population of Noccaea caerulescens Monte Prinzera

    Get PDF
    Hyperaccumulation is a fascinating trait displayed by a few plant species able to accumulate large amounts of metal ions in above-ground tissues without symptoms of toxicity. Noccaea caerulescens is a recognized model system to study metal hyperaccumulation and hypertolerance. A N. caerulescens population naturally growing on a serpentine soil in the Italian Apennine Mountains, Monte Prinzera, was chosen for the study here reported. Plants were grown hydroponically and treated with different metals, in excess or limiting concentrations. Accumulated metals were quantified in shoots and roots by means of ICP-MS. By real-time PCR analysis, the expression of metal transporters and Fe deficiency-regulated genes was compared in the shoots and roots of treated plants. N. caerulescens Monte Prinzera confirmed its ability to hypertolerate and hyperaccumulate Ni but not Zn. Moreover, excess Ni does not induce Fe deficiency as in Ni-sensitive species and instead competes with Fe translocation rather than its uptake

    Evaluation of the Potential Use of a Collagen-Based Protein Hydrolysate as a Plant Multi-Stress Protectant

    Get PDF
    Protein hydrolysates (PHs) are a class of plant biostimulants used in the agricultural practice to improve crop performance. In this study, we have assessed the capacity of a commercial PH derived from bovine collagen to mitigate drought, hypoxic, and Fe deficiency stress in Zea mays. As for the drought and hypoxic stresses, hydroponically grown plants treated with the PH exhibited an increased growth and absorption area of the roots compared with those treated with inorganic nitrogen. In the case of Fe deficiency, plants supplied with the PH mixed with FeCl3 showed a faster recovery from deficiency compared to plants supplied with FeCl3 alone or with FeEDTA, resulting in higher SPAD values, a greater concentration of Fe in the leaves and modulation in the expression of genes related to Fe. Moreover, through the analysis of circular dichroism spectra, we assessed that the PH interacts with Fe in a dose-dependent manner. Various hypothesis about the mechanisms of action of the collagen-based PH as stress protectant particularly in Fe-deficiency, are discussed

    cDNA-AFLP analysis of plant and pathogen genes expressed in grapevine infected with Plasmopara viticola

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The oomycete <it>Plasmopara viticola </it>(Berk. and Curt.) Berl. and de Toni causes downy mildew in grapevine (<it>Vitis vinifera </it>L.). This pathogen is strictly biotrophic, thus completely dependent on living host cells for its survival. The molecular basis of compatibility and disease development in this system is poorly understood. We have carried out a large-scale cDNA-AFLP analysis to identify grapevine and <it>P. viticola </it>genes associated with the infection process.</p> <p>Results</p> <p>We carried out cDNA-AFLP analysis on artificially infected leaves of the susceptible cultivar Riesling at the oil spot stage, on water-treated leaves and on a sample of pure sporangia as controls. Selective amplifications with 128 primer combinations allowed the visualization of about 7000 transcript-derived fragments (TDFs) in infected leaves, 1196 of which (17%) were differentially expressed. We sequenced 984 fragments, 804 of which were identified as grapevine transcripts after homology searching, while 96 were homologous to sequences in <it>Phytophthora </it>spp. databases and were attributed to <it>P. viticola</it>. There were 82 orphan TDFs. Many grapevine genes spanning almost all functional categories were downregulated during infection, especially genes involved in photosynthesis. Grapevine genes homologous to known resistance genes also tended to be repressed, as were several resistance gene analogs and carbonic anhydrase (recently implicated in pathogen resistance). In contrast, genes encoding cytoskeletal components, enzymes of the phenylpropanoid and beta-oxidation pathways, and pathogenesis related proteins were primarily upregulated during infection. The majority of <it>P. viticola </it>transcripts expressed <it>in planta </it>showed homology to genes of unknown function or to genomic <it>Phytophthora </it>sequences, but genes related to metabolism, energy production, transport and signal transduction were also identified.</p> <p>Conclusion</p> <p>This study provides the first global catalogue of grapevine and <it>P. viticola </it>genes expressed during infection, together with their functional annotations. This will help to elucidate the molecular basis of the infection process and identify genes and chemicals that could help to inhibit the pathogen.</p

    Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plants react to iron deficiency stress adopting different kind of adaptive responses. Tomato, a <it>Strategy I </it>plant, improves iron uptake through acidification of rhizosphere, reduction of Fe<sup>3+ </sup>to Fe<sup>2+ </sup>and transport of Fe<sup>2+ </sup>into the cells. Large-scale transcriptional analyses of roots under iron deficiency are only available for a very limited number of plant species with particular emphasis for <it>Arabidopsis thaliana</it>. Regarding tomato, an interesting model species for <it>Strategy I </it>plants and an economically important crop, physiological responses to Fe-deficiency have been thoroughly described and molecular analyses have provided evidence for genes involved in iron uptake mechanisms and their regulation. However, no detailed transcriptome analysis has been described so far.</p> <p>Results</p> <p>A genome-wide transcriptional analysis, performed with a chip that allows to monitor the expression of more than 25,000 tomato transcripts, identified 97 differentially expressed transcripts by comparing roots of Fe-deficient and Fe-sufficient tomato plants. These transcripts are related to the physiological responses of tomato roots to the nutrient stress resulting in an improved iron uptake, including regulatory aspects, translocation, root morphological modification and adaptation in primary metabolic pathways, such as glycolysis and TCA cycle. Other genes play a role in flavonoid biosynthesis and hormonal metabolism.</p> <p>Conclusions</p> <p>The transcriptional characterization confirmed the presence of the previously described mechanisms to adapt to iron starvation in tomato, but also allowed to identify other genes potentially playing a role in this process, thus opening new research perspectives to improve the knowledge on the tomato root response to the nutrient deficiency.</p

    Changes in physiological activities and root exudation profile of two grapevine rootstocks reveal common and specific strategies for Fe acquisition

    Get PDF
    In several cultivation areas, grapevine can suffer from Fe chlorosis due to the calcareous and alkaline nature of soils. This plant species has been described to cope with Fe deficiency by activating Strategy I mechanisms, hence increasing root H+ extrusion and ferric-chelate reductase activity. The degree of tolerance exhibited by the rootstocks has been reported to depend on both reactions, but to date, little emphasis has been given to the role played by root exudate extrusion. We studied the behaviour of two hydroponically-grown, tolerant grapevine rootstocks (Ramsey and 140R) in response to Fe deficiency. Under these experimental conditions, the two varieties displayed differences in their ability to modulate morpho-physiological parameters, root acidification and ferric chelate reductase activity. The metabolic profiling of root exudates revealed common strategies for Fe acquisition, including ones targeted at reducing microbial competition for this micronutrient by limiting the exudation of amino acids and sugars and increasing instead that of Fe(III)-reducing compounds. Other modifications in exudate composition hint that the two rootstocks cope with Fe shortage via specific adjustments of their exudation patterns. Furthermore, the presence of 3-hydroxymugenic acid in these compounds suggests that the responses of grapevine to Fe availability are rather diverse and much more complex than those usually described for Strategy I plants

    Growth Stimulatory Effects and Genome-Wide Transcriptional Changes Produced by Protein Hydrolysates in Maize Seedlings

    Get PDF
    Protein hydrolysates are an emerging class of crop management products utilized for improving nutrient assimilation and mitigating crop stress. They generally consist of a mixture of peptides and free amino acids derived from the hydrolysis of plant or animal sources. The present work was aimed at studying the effects and the action mechanisms of a protein hydrolysate derived from animal residues on maize root growth and physiology in comparison with the effects induced by either free amino acids or inorganic N supply. The application of the protein hydrolysate caused a remarkable enhancement of root growth. In particular, in the protein hydrolysate-treated plants the length and surface area of lateral roots were about 7 and 1.5 times higher than in plants treated with inorganic N or free amino acids, respectively. The root growth promoting effect of the protein hydrolysate was associated with an increased root accumulation of K, Zn, Cu, and Mn when compared with inorganic N and amino acids treatments. A microarray analysis allowed to dissect the transcriptional changes induced by the different treatments demonstrating treatment-specific effects principally on cell wall organization, transport processes, stress responses and hormone metabolism

    Chemical Characterization of a Collagen-Derived Protein Hydrolysate and Biostimulant Activity Assessment of Its Peptidic Components

    Get PDF
    Protein hydrolysates (PHs) are plant biostimulants consisting of oligopeptides and free amino acids exploited in agriculture to increase crop productivity. This work aimed to fractionate a commercial collagen-derived protein hydrolysate (CDPH) according to the molecular mass of the peptides and evaluate the bioactivity of different components. First, the CDPH was dialyzed and/or filtrated and analyzed on maize, showing that smaller compounds were particularly active in stimulating lateral root growth. The CDPH was then fractionated through fast protein liquid chromatography and tested on in vitro grown tomatoes proving that all the fractions were bioactive. Furthermore, these fractions were characterized by liquid chromatography-electrospray ionization- tandem mass spectrometry revealing a consensus sequence shared among the identified peptides. Based on this sequence, a synthetic peptide was produced. We assessed its structural similarity with the CDPH, the collagen, and polyproline type II helix by comparing the respective circular dichroism spectra and for the first time, we proved that a signature peptide was as bioactive as the whole CDPH
    • 

    corecore