46 research outputs found
Ross River virus antibody prevalence in the Fiji Islands, 2013-2015
A unique outbreak of Ross River virus (RRV) infection was reported in Fiji in 1979. In 2013, 29
RRV seroprevalence among residents was 46.5%. Of those born after 1982, 37.4% had anti-RRV 30
antibodies. Between 2013-2015, 10.9% of residents had seroconverted to RRV suggesting 31
ongoing endemic circulation of RRV in Fiji
Ross River virus antibody prevalence in the Fiji Islands, 2013-2015
A unique outbreak of Ross River virus (RRV) infection was reported in Fiji in 1979. In 2013, 29
RRV seroprevalence among residents was 46.5%. Of those born after 1982, 37.4% had anti-RRV 30
antibodies. Between 2013-2015, 10.9% of residents had seroconverted to RRV suggesting 31
ongoing endemic circulation of RRV in Fiji
CDK5RAP2 primary microcephaly is associated with hypothalamic, retinal and cochlear developmental defects
International audienc
Sustained Low-Level Transmission of Zika and Chikungunya Viruses after Emergence in the Fiji Islands.
Zika and chikungunya viruses were first detected in Fiji in 2015. Examining surveillance and phylogenetic and serologic data, we found evidence of low-level transmission of Zika and chikungunya viruses during 2013-2017, in contrast to the major outbreaks caused by closely related virus strains in other Pacific Island countries
Recent Emergence of Dengue Virus Serotype 4 in French Polynesia Results from Multiple Introductions from Other South Pacific Islands
BACKGROUND: Infection by dengue virus (DENV) is a major public health concern in hundreds of tropical and subtropical countries. French Polynesia (FP) regularly experiences epidemics that initiate, or are consecutive to, DENV circulation in other South Pacific Island Countries (SPICs). In January 2009, after a decade of serotype 1 (DENV-1) circulation, the first cases of DENV-4 infection were reported in FP. Two months later a new epidemic emerged, occurring about 20 years after the previous circulation of DENV-4 in FP. In this study, we investigated the epidemiological and molecular characteristics of the introduction, spread and genetic microevolution of DENV-4 in FP. METHODOLOGY/PRINCIPAL FINDINGS: Epidemiological data suggested that recent transmission of DENV-4 in FP started in the Leeward Islands and this serotype quickly displaced DENV-1 throughout FP. Phylogenetic analyses of the nucleotide sequences of the envelope (E) gene of 64 DENV-4 strains collected in FP in the 1980s and in 2009-2010, and some additional strains from other SPICs showed that DENV-4 strains from the SPICs were distributed into genotypes IIa and IIb. Recent FP strains were distributed into two clusters, each comprising viruses from other but distinct SPICs, suggesting that emergence of DENV-4 in FP in 2009 resulted from multiple introductions. Otherwise, we observed that almost all strains collected in the SPICs in the 1980s exhibit an amino acid (aa) substitution V287I within domain I of the E protein, and all recent South Pacific strains exhibit a T365I substitution within domain III. CONCLUSIONS/SIGNIFICANCE: This study confirmed the cyclic re-emergence and displacement of DENV serotypes in FP. Otherwise, our results showed that specific aa substitutions on the E protein were present on all DENV-4 strains circulating in SPICs. These substitutions probably acquired and subsequently conserved could reflect a founder effect to be associated with epidemiological, geographical, eco-biological and social specificities in SPICs
Interactions between timing and transmissibility explain diverse flavivirus dynamics in Fiji.
Zika virus (ZIKV) has caused large, brief outbreaks in isolated populations, however ZIKV can also persist at low levels over multiple years. The reasons for these diverse transmission dynamics remain poorly understood. In Fiji, which has experienced multiple large single-season dengue epidemics, there was evidence of multi-year transmission of ZIKV between 2013 and 2017. To identify factors that could explain these differences in dynamics between closely related mosquito-borne flaviviruses, we jointly fit a transmission dynamic model to surveillance, serological and molecular data. We estimate that the observed dynamics of ZIKV were the result of two key factors: strong seasonal effects, which created an ecologically optimal time of year for outbreaks; and introduction of ZIKV after this optimal time, which allowed ZIKV transmission to persist over multiple seasons. The ability to jointly fit to multiple data sources could help identify a similar range of possible outbreak dynamics in other settings