10 research outputs found

    Australian dust storm associated with extensive Aspergillus sydowii fungal "Bloom" in coastal waters

    Get PDF
    A massive central Australian dust storm in September 2009 was associated with abundant fungal spores (150,000/m(3)) and hyphae in coastal waters between Brisbane (27 degrees S) and Sydney (34 degrees S). These spores were successfully germinated from formalinpreserved samples, and using molecular sequencing of three different genes (the large subunit rRNA gene [LSU], internal transcribed spacer [ITS], and beta-tubulin gene), they were conclusively identified as Aspergillus sydowii, an organism circumstantially associated with gorgonian coral fan disease in the Caribbean. Surprisingly, no human health or marine ecosystem impacts were associated with this Australian dust storm event. Australian fungal cultures were nontoxic to fish gills and caused a minor reduction in the motility of Alexandrium or Chattonella algal cultures but had their greatest impacts on Symbiodinium dinoflagellate coral symbiont motility, with hyphae being more detrimental than spores. While we have not yet seen any soft coral disease outbreaks on the Australian Great Barrier Reef similar to those observed in the Caribbean and while this particular fungal population was non-or weakly pathogenic, our observations raise the possibility of future marine ecosystem pathogen impacts from similar dust storms harboring more pathogenic strains

    A database of marine phytoplankton abundance, biomass and species composition in Australian waters

    Get PDF
    There have been many individual phytoplankton datasets collected across Australia since the mid 1900s, but most are unavailable to the research community. We have searched archives, contacted researchers, and scanned the primary and grey literature to collate 3,621,847 records of marine phytoplankton species from Australian waters from 1844 to the present. Many of these are small datasets collected for local questions, but combined they provide over 170 years of data on phytoplankton communities in Australian waters. Units and taxonomy have been standardised, obviously erroneous data removed, and all metadata included. We have lodged this dataset with the Australian Ocean Data Network (http://portal.aodn.org.au/) allowing public access. The Australian Phytoplankton Database will be invaluable for global change studies, as it allows analysis of ecological indicators of climate change and eutrophication (e.g., changes in distribution; diatom:dinoflagellate ratios). In addition, the standardised conversion of abundance records to biomass provides modellers with quantifiable data to initialise and validate ecosystem models of lower marine trophic levels

    Australia's long-term plankton observations: the integrated marine observing system national reference station network

    Get PDF
    The Integrated Marine Observing System National Reference Station network provides unprecedented open access to species-level phytoplankton and zooplankton data for researchers, managers and policy makers interested in resource condition, and detecting and understanding the magnitude and time-scales of change in our marine environment. We describe how to access spatial and temporal plankton data collected from the seven reference stations located around the Australian coastline, and a summary of the associated physical and chemical parameters measured that help in the interpretation of plankton data. Details on the rationale for site locations, sampling methodologies and laboratory analysis protocols are provided to assist with use of the data, and design of complimentary investigations. Information on taxonomic entities reported in the plankton database, and changes in taxonomic nomenclature and other issues that may affect data interpretation, are included. Data from more than 1250 plankton samples are freely available via the Australian Ocean Data Network portal and we encourage uptake and use of this continental-scale dataset, giving summaries of data currently available and some practical applications. The full methods manual that includes sampling and analysis protocols for the Integrated Marine Observing System Biogeochemical Operations can be found on-line

    A database of zooplankton biomass in Australian marine waters

    No full text
    Zooplankton biomass data have been collected in Australian waters since the 1930s, yet most datasets have been unavailable to the research community. We have searched archives, scanned the primary and grey literature, and contacted researchers, to collate 49187 records of marine zooplankton biomass from waters around Australia (0–60°S, 110–160°E). Many of these datasets are relatively small, but when combined, they provide >85 years of zooplankton biomass data for Australian waters from 1932 to the present. Data have been standardised and all available metadata included. We have lodged this dataset with the Australian Ocean Data Network, allowing full public access. The Australian Zooplankton Biomass Database will be valuable for global change studies, research assessing trophic linkages, and for initialising and assessing biogeochemical and ecosystem models of lower trophic levels

    Climate change cascades: Shifts in oceanography, species' ranges and subtidal marine community dynamics in eastern Tasmania

    No full text
    Several lines of evidence show that ocean warming off the east coast of Tasmania is the result of intensification of the East Australian Current (EAC). Increases in the strength, duration and frequency of southward incursions of warm, nutrient poor EAC water transports heat and biota to eastern Tasmania. This shift in large-scale oceanography is reflected by changes in the structure of nearshore zooplankton communities and other elements of the pelagic system; by a regional decline in the extent of dense beds of giant kelp (Macrocystis pyrifera); by marked changes in the distribution of nearshore fishes; and by range expansions of other northern warmer-water species to colonize Tasmanian coastal waters. Population-level changes in commercially important invertebrate species may also be associated with the warming trend

    Testing Bergmann's rule in marine copepods

    No full text
    Macroecological relationships provide insights into rules that govern ecological systems. Bergmann's rule posits that members of the same clade are larger at colder temperatures. Whether temperature drives this relationship is debated because several other potential drivers covary with temperature. We conducted a near-global comparative analysis on marine copepods (97 830 samples, 388 taxa) to test Bergmann's rule, considering other potential drivers. Supporting Bergmann's rule, we found temperature better predicted size than did latitude or oxygen, with body size decreasing by 43.9% across the temperature range (-1.7 to 30ÂșC). Body size also decreased by 26.9% across the range in food availability. Our results provide strong support for Bergman's rule in copepods, but emphasises the importance of other drivers in modifying this pattern. As the world warms, smaller copepod species are likely to emerge as ‘winners', potentially reducing rates of fisheries production and carbon sequestration

    Data Paper. Data Paper

    No full text
    <h2>File List</h2><div> <p><a href="zooplankton_abundance_data.csv">zooplankton_abundance_data.csv</a> (MD5: 9d7672c32a4d2fe805cc91f081877e1b)</p> <p><a href="zooplankton_metadata.csv">zooplankton_metadata.csv</a> (MD5: 806bcd4109502706633c1bf61d2f3f66)</p> </div><h2>Description</h2><div> <p>Zooplankton are the key trophic link between primary producers and fish in pelagic ecosystems. Historically, there are few zooplankton time series in Australia, with no data sets longer than two years prior to 2008. Here we compile 98 676 abundance records of more than 1000 zooplankton taxa from unpublished research cruises, student projects, published literature, and the recent integrated marine observing system (IMOS). This data set covers the entire coastal and shelf region of Australia and dates back to 1938. Most records are for copepods, but there are also data for other taxa such as decapods, chaetognaths, thaliaceans, appendicularians, and cladocerans. Metadata are provided for each record, including dates, coordinates, and information on mesh size and sampling methods. To facilitate analysis across the multiple data sets, we have updated the species names according to the World Register of Marine Species (WoRMS) and converted units to abundance per cubic meter. These data will be valuable for studies of biodiversity, biogeography, impacts of climate change, and ecosystem health. We encourage researchers holding additional Australian zooplankton data to contact us and contribute their data to the data set so we can periodically publish updates.</p> <p> <i>Key words</i>: <i>biogeography; continuous plankton recorder; copepod; diversity; integrated marine observing system (IMOS); plankton; species richness; zooplankton abundance.</i> </p> </div
    corecore