111 research outputs found

    Mapping of femtosecond laser-induced collateral damage by electron backscatter diffraction

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98720/1/JApplPhys_110_083114.pd

    Induction motor’s rotor slot variation measurement using logistic regression

    Get PDF
    Rotor slots in induction motor expand due to thermal imbalance and create magnetic stress. Magnetic stress is a force that develops on the laminated surface of the rotor due to the curving or stretching magnetic flux. Traditional motor fault detection methods never measure magnetic stress on the rotor; a significant problem frequently arises in the motor. Magnetic stress is proportional to slot size variations in the rotor. High slot size variations on the laminated surface of the rotor lead to more curving and stretching magnetic flux and damage the rotor and stator, reducing their efficiency and induce harmonics. In this paper, the Average rotor Slot Size Variation (ASSV) in the rotor is predicted during the running condition of the motor through logistic regression. Logistic regression predicts ASSV by multimodal sensor signal sub-band energy values and measures rotor slot sizes from microscope images. Multimodal sensor signal is obtained from various sensors, such as vibration, temperature, current and Giant Magneto Resistance (GMR). Signal sub-band energy is obtained from Over complete Rational-Dilation Wavelet Transform (ORaDWT). From experimental results, ASSV is more than 75% from standard size, damaging the rotor and stator. The accuracy of ASSV prediction is about 92%

    Investigation on extendable multiport DC–DC boost converter for hybrid renewable energy systems

    Get PDF
    In this work, the integration of renewable hybrid energy (RHE) resources using extendable multiport DC–DC boost converter is investigated. Three renewable energy sources such as solar photovoltaic (PV) system, wind energy system and fuel cell (FC) are integrated into the grid via this converter and grid-tied inverter. The output voltage of the multiport DC–DC boost converter is controlled using adaptive neuro fuzzy inference system-based controller. The overall system model is developed and tested in the MATLAB simulation software and also implemented in real time. The overall system is tested for different operating conditions such as change in irradiance condition of the solar PV panel, change in wind speed condition of the wind turbine, change in hydrogen pressure conditions of the FC and sudden change in load conditions and corresponding results are measured and analysed. The efficiency of the proposed system is about 98.21%. Finally, experimental results of the proposed model are also presented to examine the suitability of the system

    Remediation of lead (Pb) by a novel Klebsiella sp. isolated from tannery effluent of Ranipet, Vellore district

    Get PDF
    Lead is found to be one of the most toxic heavy metal according to American public health association (APHA). Vellore district is one of the most polluted sites in the world. It is more common for lead poisoning to build up slowly over time. Over time, even low levels of lead exposure can harm a child's mental development. Therefore new resources for the removal of lead are the need of the hour. Soil and effluent samples were obtained from common effluent treatment plant; Ranipet, Vellore district. The concentration of heavy metal was also assessed in the collected samples and then isolated lead tolerant bacteria over lead containing mineral salt medium. The isolated desired bacteria was also tested for their ability to remediate other heavy metals like chromium (Cr), iron (Fe), zinc (Zn), cadmium (Cd) which are present in the tannery effluent. The one with good bioremediation activity was further characterized by sequencing 16S rRNA gene and it was found to be a novel species of Klebsiella genus.Keywords: Lead tolerant bacteria, Klebsiella, heavy metal remediationAfrican Journal of Biotechnology Vol. 12(32), pp. 5069-507

    DEVELOPMENT AND CHARACTERIZATION OF SRM MICROSPHERES OF REPAGLINIDE

    Get PDF
    The aim of current work to develop and evaluate sustained release mucoadhesive (SRM) microspheres of Repaglinide using emulsification solvent evaporation technique. Effects of formulation variables i.e. polymer concentration and phase volume ratio on particle size, % mucoadhesion and drug release were investigated in this study. Scanning electron microscopy of microspheres with maximum drug content (Formulation CH1:8) demonstrated smooth surface spherical particles with mean diameter of 64.78 ± 3.26 μm. The mean Particle size, % drug loading and mucoadhesion were found to vary by changing the formulation variables. Microspheres size was significantly increased as increasing the polymer concentration in the aqueous phase while size of microspheres decrease as increase in volume of continuous phase. Decrease in size of microspheres leads to decrease in mucoadhesion time, % drug loading and faster the drug release. It can be concluded that the present mucoadhesive microspheres can be an ideal system to deliver the Repaglinide in sustained release manner for management of Type II Diabetes Mellitus

    Development and application of C - scan ultrasonic facility

    Get PDF
    This paper presents the in-house development and application of a C-scan ultrasonic facility ULTIMA 200M2 at the Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, carried out in collaboration with the Electronics Division, Bhabha Atomic Research Centre (BARC), Mumbai. The paper describes various constituents of the system developed and also highlights the typical results obtained using this system, including bond integrity assessment of explosive welds and imaging of fuel sub-assembly heads of the Fast Breeder Test Reactor. The system has also been used for imaging both the sides of a one rupee Indian coin. All the finer details of the coin could be extracted, demonstrating the resolution capabilities of the system

    The Murchison Widefield Array: Design Overview

    Get PDF
    The Murchison Widefield Array (MWA) is a dipole-based aperture array synthesis telescope designed to operate in the 80-300 MHz frequency range. It is capable of a wide range of science investigations, but is initially focused on three key science projects. These are detection and characterization of 3-dimensional brightness temperature fluctuations in the 21cm line of neutral hydrogen during the Epoch of Reionization (EoR) at redshifts from 6 to 10, solar imaging and remote sensing of the inner heliosphere via propagation effects on signals from distant background sources,and high-sensitivity exploration of the variable radio sky. The array design features 8192 dual-polarization broad-band active dipoles, arranged into 512 tiles comprising 16 dipoles each. The tiles are quasi-randomly distributed over an aperture 1.5km in diameter, with a small number of outliers extending to 3km. All tile-tile baselines are correlated in custom FPGA-based hardware, yielding a Nyquist-sampled instantaneous monochromatic uv coverage and unprecedented point spread function (PSF) quality. The correlated data are calibrated in real time using novel position-dependent self-calibration algorithms. The array is located in the Murchison region of outback Western Australia. This region is characterized by extremely low population density and a superbly radio-quiet environment,allowing full exploitation of the instrumental capabilities.Comment: 9 pages, 5 figures, 1 table. Accepted for publication in Proceedings of the IEE

    Genetic Affinities of the Central Indian Tribal Populations

    Get PDF
    Background: The central Indian state Madhya Pradesh is often called as ‘heart of India ’ and has always been an important region functioning as a trinexus belt for three major language families (Indo-European, Dravidian and Austroasiatic). There are less detailed genetic studies on the populations inhabited in this region. Therefore, this study is an attempt for extensive characterization of genetic ancestries of three tribal populations, namely; Bharia, Bhil and Sahariya, inhabiting this region using haploid and diploid DNA markers. Methodology/Principal Findings: Mitochondrial DNA analysis showed high diversity, including some of the older sublineages of M haplogroup and prominent R lineages in all the three tribes. Y-chromosomal biallelic markers revealed high frequency of Austroasiatic-specific M95-O2a haplogroup in Bharia and Sahariya, M82-H1a in Bhil and M17-R1a in Bhil and Sahariya. The results obtained by haploid as well as diploid genetic markers revealed strong genetic affinity of Bharia (a Dravidian speaking tribe) with the Austroasiatic (Munda) group. The gene flow from Austroasiatic group is further confirmed by their Y-STRs haplotype sharing analysis, where we determined their founder haplotype from the North Munda speaking tribe, while, autosomal analysis was largely in concordant with the haploid DNA results. Conclusions/Significance: Bhil exhibited largely Indo-European specific ancestry, while Sahariya and Bharia showed admixed genetic package of Indo-European and Austroasiatic populations. Hence, in a landscape like India, linguistic labe

    Reconstructing the demographic history of the Himalayan and adjoining populations

    Get PDF
    The rugged topography of the Himalayan region has hindered large-scale human migrations, population admixture and assimilation. Such complexity in geographical structure might have facilitated the existence of several small isolated communities in this region. We have genotyped about 850,000 autosomal markers among 35 individuals belonging to the four major populations inhabiting the Himalaya and adjoining regions. In addition, we have genotyped 794 individuals belonging to 16 ethnic groups from the same region, for uniparental (mitochondrial and Y chromosomal DNA) markers. Our results in the light of various statistical analyses suggest a closer link of the Himalayan and adjoining populations to East Asia than their immediate geographical neighbours in South Asia. Allele frequency-based analyses likely support the existence of a specific ancestry component in the Himalayan and adjoining populations. The admixture time estimate suggests a recent westward migration of populations living to the East of the Himalaya. Furthermore, the uniparental marker analysis among the Himalayan and adjoining populations reveal the presence of East, Southeast and South Asian genetic signatures. Interestingly, we observed an antagonistic association of Y chromosomal haplogroups O3 and D clines with the longitudinal distance. Thus, we summarise that studying the Himalayan and adjoining populations is essential for a comprehensive reconstruction of the human evolutionary and ethnolinguistic history of eastern Eurasia
    corecore