96 research outputs found

    Ovarian Cancer Metastasis: A Unique Mechanism of Dissemination

    Get PDF
    Ovarian cancer is the most lethal of all gynecologic malignancies and has witnessed minimal improvements in patient outcomes in the past three decades. About 70% of ovarian cancer patients present with disseminated disease at the time of diagnosis. The standard of care remains a combination of debulking surgery and platinum‐ and taxanes‐based cytotoxic chemotherapy. Even though metastasis is the leading cause of ovarian cancer related fatalities, our understanding of the process remains limited. Ovarian cancer has a unique pattern of metastasis where the hematogenous spread is less common. Ovarian cancer cells mainly metastasize within the peritoneal cavity, which involves exfoliation from the primary tumor, survival, and transport in the peritoneal fluid followed by metastatic colonization of the organs within the peritoneal cavity. A key step for successful metastasis is their attachment and productive interactions with the mesothelial cells covering the metastatic organs for the establishment of metastatic tumors. This chapter provides an overview of ovarian cancer metastasis highlighting the unique dissemination and the underlying mechanisms of regulation of the steps involved. The role of the microenvironment in the process of metastasis will also be reviewed

    Tumor microenvironment and immunology of ovarian cancer: 12th Biennial Rivkin Center Ovarian Cancer Research Symposium

    Get PDF
    The 12th Biennial Ovarian Cancer Research Symposium organized by the Rivkin Center for Ovarian Cancer and the American Association for Cancer Research held on September 13–15, 2018 covered cutting edge and relevant research topics in ovarian cancer biology and therapy. Sessions included detection and prevention, genomics and molecular mechanisms, tumor microenvironment and immunology, novel therapeutics, and an education session. In this article we provide an overview of the key findings presented in the tumor microenvironment and immunology session

    WebGeSTer DB-a transcription terminator database

    Get PDF
    We present WebGeSTer DB, the largest database of intrinsic transcription terminators (http://pallab .serc.iisc.ernet.in/gester). The database comprises of a million terminators identified in 1060 bacterial genome sequences and 798 plasmids. Users can obtain both graphic and tabular results on putative terminators based on default or user-defined parameters. The results are arranged in different tiers to facilitate retrieval, as per the specific requirements. An interactive map has been incorporated to visualize the distribution of terminators across the whole genome. Analysis of the results, both at the whole-genome level and with respect to terminators downstream of specific genes, offers insight into the prevalence of canonical and non-canonical terminators across different phyla. The data in the database reinforce the paradigm that intrinsic termination is a conserved and efficient regulatory mechanism in bacteria. Our database is freely accessible

    The Tumor Microenvironment of High Grade Serous Ovarian Cancer

    Get PDF
    The Special Issue on high grade serous ovarian cancer (HGSOC) and the contribution of the tumor micro-environment (TME) consisted of reviews contributed by leaders in the ovarian cancer (OC) field. [...]

    Productive Cross-Talk with the Microenvironment: A Critical Step in Ovarian Cancer Metastasis

    Get PDF
    Most ovarian cancer patients present with disseminated disease at the time of their diagnosis, which is one of the main reasons for their poor prognosis. Metastasis is a multi-step process and a clear understanding of the mechanism of regulation of these steps remains elusive. Productive reciprocal interactions between the metastasizing ovarian cancer cells and the microenvironment of the metastatic site or the tumor microenvironment play an important role in the successful establishment of metastasis. Much progress has been made in the recent past in our understanding of such interactions and the role of the cellular and acellular components of the microenvironment in establishing the metastatic tumors. This review will outline the role of the microenvironmental components of the ovarian cancer metastatic niche and their role in helping establish the metastatic tumors. Special emphasis will be given to the mesothelial cells, which are the first cells encountered by the cancer cells at the site of metastasis

    Transcriptome Profiling Reveals Matrisome Alteration as a Key Feature of Ovarian Cancer Progression

    Get PDF
    BACKGROUND: Ovarian cancer is the most lethal gynecologic malignancy. There is a lack of comprehensive investigation of disease initiation and progression, including gene expression changes during early metastatic colonization. METHODS: RNA-sequencing (RNA-seq) was done with matched primary tumors and fallopian tubes (n = 8 pairs) as well as matched metastatic and primary tumors (n = 11 pairs) from ovarian cancer patients. Since these are end point analyses, it was combined with RNA-seq using high-grade serous ovarian cancer cells seeded on an organotypic three-dimensional (3D) culture model of the omentum, mimicking early metastasis. This comprehensive approach revealed key changes in gene expression occurring in ovarian cancer initiation and metastasis, including early metastatic colonization. RESULTS: 2987 genes were significantly deregulated in primary tumors compared to fallopian tubes, 845 genes were differentially expressed in metastasis compared to primary tumors and 304 genes were common to both. An assessment of patient metastasis and 3D omental culture model of early metastatic colonization revealed 144 common genes that were altered during early colonization and remain deregulated even in the fully developed metastasis. Deregulation of the matrisome was a key process in early and late metastasis. CONCLUSION: These findings will help in understanding the key pathways involved in ovarian cancer progression and eventually targeting those pathways for therapeutic interventions

    A Facile Synthesis of Pt Nanoflowers Composed of an Ordered Array of Nanoparticles

    Get PDF
    Platinum nanoflowers (Pt NFs) composed of an ordered assembly of nanoparticles were synthesized by an ethanol reduction of [PtCl6]2– under a reflux condition (85 °C) at pH 2.5 in the presence of PVP (molecular weight 10,000) as a structure‐directing agent. Optical and transmission electron microscopic (TEM) studies confirmed the reduction of [PtCl6]2– into Pt0 followed by its growth to form Pt NPs of a size of ~4 nm, which were then assembled into ordered NFs through epitaxial growth along the (111) plane. The mechanism of the Pt NFs’ formation with respect to the use of PVP of different molecular weights and the pH of the reaction is discussed in detail

    Functional characterization of a panel of high-grade serous ovarian cancer cell lines as representative experimental models of the disease.

    Get PDF
    Genomic analysis of ovarian cancer cell lines has revealed a panel that best represents the most common ovarian cancer subtype, high-grade serous ovarian cancer (HGSOC). However, these HGSOC-like cell lines have not been extensively applied by ovarian cancer researchers to date, and the most commonly used cell lines in the ovarian cancer field do not genetically resemble the major clinical type of the disease. For the HGSOC-like lines to serve as suitable models, they need to be characterized for common functional assays. To achieve that objective, we systematically studied a panel of HGSOC cells CAOV3, COV362, Kuramochi, OVCAR4, OVCAR5, OVCAR8, OVSAHO and SNU119 for migration, invasion, proliferation, clonogenicity, EMT phenotype and cisplatin resistance. They exhibited a range of efficacies and OVCAR5, OVCAR8 and Kuramochi were the most aggressive. SNU119 and OVSAHO cells demonstrated the lowest functional activities. Wide differences in expression of EMT markers were observed between cell lines. SNU119 were the most epithelial and OVCAR8 had the most mesenchymal phenotype. COV362 was the most resistant to cisplatin while CAOV3 was the most sensitive. Taken together, our systematic characterization represents a valuable resource to help guide the application of HGSOC cells by the cancer research community

    The Tumor Microenvironment of High Grade Serous Ovarian Cancer

    Get PDF
    The Special Issue on high grade serous ovarian cancer (HGSOC) and the contribution of the tumor microenviroment (TME) consists of reviews contributed by leaders in the OC field. As HGSOC metastases have a highly complex TME, there is an urgent need to better understand the TME in general, its distinct components in particular, and the role of the TME in the context of disease recurrence and development of chemoresistance. The Special Issue incorporates the current understanding of the different parts of thd TME components, including the cancer cells themselves, the cells surrounding the cancer cells or stromal cells, and the cells of the immune system, which are attracted to the site of metastases. In addition to these cells of the TME, the role of various cellular factors made by the cells of the TME are also the subject of the reviews. In addition, reviews in this Special Issue cover the complex relationships between the molecular mechanisms of HGSOC progression, including genomic, epigenomic and transcriptomic changes and changes in the immune cell landscape, as these may provide attractive new molecular targets for HGSOC therapy

    A Proximal Culture Method to Study Paracrine Signaling Between Cells

    Get PDF
    Intercellular interactions play an important role in many biological processes, including tumor progression, immune responses, angiogenesis, and development. Paracrine or juxtacrine signaling mediates such interactions. The use of a conditioned medium and coculture studies are the most common methods to discriminate between these two types of interactions. However, the effect of localized high concentrations of secreted factors in the microenvironment during the paracrine interactions is not accurately recapitulated by conditioned medium and, thus, may lead to imprecise conclusions. To overcome this problem, we have devised a proximal culture method to study paracrine signaling. The two cell types are grown on either surface of a 10 µm-thick polycarbonate membrane with 0.4 µm pores. The pores allow the exchange of secreted factors and, at the same time, inhibit juxtacrine signaling. The cells can be collected and lysed at the endpoint to determine the effects of the paracrine signaling. In addition to allowing for localized concentration gradients of secreted factors, this method is amenable to experiments involving prolonged periods of culture, as well as the use of inhibitors. While we use this method to study the interactions between ovarian cancer cells and the mesothelial cells they encounter at the site of metastasis, it can be adapted to any two adherent cell types for researchers to study paracrine signaling in various fields, including tumor microenvironment, immunology, and development
    corecore