900 research outputs found

    Высокочастотный кондСнсатор с Ρ€Π°Π±ΠΎΡ‡ΠΈΠΌ вСщСством «изолятор Π½Π΅Π»Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ ΠΊΡ€Π΅ΠΌΠ½ΠΈΠΉ изолятор»

    Get PDF
    The study of the parameters of capacitors with various working substances is of interest for the design and creation of electronic elements, in particular for the development of high-frequency phase-shifting circuits.The purpose of the work is to calculate the high-frequency capacitance of a capacitor with the working substance "insulator-undoped silicon-insulator" at different applied to the capacitor direct current (DC) voltages, measuring signal frequencies and temperatures.A model of such the capacitor is proposed, in which 30 Β΅m thick layer of undoped (intrinsic) crystalline silicon (i-Si) is separated from each of the capacitor electrodes by 1 Β΅m thick insulator layer (silicon dioxide).The dependences of the capacitor capacitance on the DC electrical voltage U on metal electrodes at zero frequency and at the measuring signal frequency of 1 MHz at absolute temperatures T = 300 and 400 K are calculated. It is shown that the real part of the capacitor capacitance increases monotonically, while the imaginary part is negative and non-monotonically depends on U at the temperature T = 300 K. An increase in the real part of the capacitor capacitance up to the geometric capacitance of oxide layers with increasing temperature is due to a decrease in the electrical resistance of i-Si layer. As a result, with an increase in temperature up to 400 K, the real and imaginary parts of the capacitance take constant values independent of U. The capacitance of i-Si layer with an increase in both temperature T and voltage U is shunted by the electrical conductivity of this layer. The phase shift is determined for a sinusoidal electrical signal with a frequency of 0.3, 1, 10, 30, 100, and 300 MHz applied to the capacitor at temperatures 300 and 400 K.ИсслСдованиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² элСктричСских кондСнсаторов с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ Ρ€Π°Π±ΠΎΡ‡ΠΈΠΌΠΈ вСщСствами прСдставляСт интСрСс для проСктирования ΠΈ создания элСмСнтов элСктроники, Π² частности для Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ высокочастотных Ρ„Π°Π·ΠΎΡΠ΄Π²ΠΈΠ³Π°ΡŽΡ‰ΠΈΡ… Ρ†Π΅ΠΏΠ΅ΠΉ.ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π²Ρ‹ΡΠΎΠΊΠΎΡ‡Π°ΡΡ‚ΠΎΡ‚Π½ΡƒΡŽ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π΅ΠΌΠΊΠΎΡΡ‚ΡŒ кондСнсатора с Ρ€Π°Π±ΠΎΡ‡ΠΈΠΌ вСщСством «изолятор Π½Π΅Π»Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ ΠΊΡ€Π΅ΠΌΠ½ΠΈΠΉ изолятор» ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΏΠΎΠ΄Π°Π²Π°Π΅ΠΌΡ‹Ρ… Π½Π° кондСнсатор постоянных напряТСниях, частотах ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ сигнала ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°Ρ….ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° модСль Ρ‚Π°ΠΊΠΎΠ³ΠΎ кондСнсатора, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ слой Π½Π΅Π»Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ (собствСнного) кристалличСского крСмния (i-Si) Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½ΠΎΠΉ 30 ΠΌΠΊΠΌ ΠΎΡ‚Π΄Π΅Π»Π΅Π½ ΠΎΡ‚ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· элСктродов кондСнсатора слоСм изолятора (диоксида крСмния) Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½ΠΎΠΉ 1 ΠΌΠΊΠΌ.Рассчитаны зависимости Смкости кондСнсатора ΠΎΡ‚ постоянного элСктричСского напряТСния U Π½Π° мСталличСских элСктродах Π½Π° Π½ΡƒΠ»Π΅Π²ΠΎΠΉ частотС ΠΈ Π½Π° частотС ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ сигнала 1 ΠœΠ“Ρ† ΠΏΡ€ΠΈ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½Ρ‹Ρ… Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°Ρ… T = 300 ΠΈ 400 К. Показано, Ρ‡Ρ‚ΠΎ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ Ρ‡Π°ΡΡ‚ΡŒ Смкости кондСнсатора ΠΌΠΎΠ½ΠΎΡ‚ΠΎΠ½Π½ΠΎ возрастаСт, Π° мнимая Ρ‡Π°ΡΡ‚ΡŒ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π° ΠΈ Π½Π΅ΠΌΠΎΠ½ΠΎΡ‚ΠΎΠ½Π½ΠΎ зависит ΠΎΡ‚ U ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ T = 300 К. Π£Π²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ части Смкости кондСнсатора Π΄ΠΎ гСомСтричСской Смкости оксидных слоСв ΠΏΡ€ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ обусловлСно ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ΠΌ элСктричСского сопротивлСния слоя i-Si. ВслСдствиС этого с ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ Π΄ΠΎ 400 К Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΈ мнимая части Смкости ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°ΡŽΡ‚ постоянныС значСния, нСзависящиС ΠΎΡ‚ U. Π•ΠΌΠΊΠΎΡΡ‚ΡŒ слоя i-Si ΠΏΡ€ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠΈ ΠΊΠ°ΠΊ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ T, Ρ‚Π°ΠΊ ΠΈ напряТСния U ΡˆΡƒΠ½Ρ‚ΠΈΡ€ΡƒΠ΅Ρ‚ΡΡ элСктричСской ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒΡŽ этого слоя. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ сдвиг Ρ„Π°Π· для ΡΠΈΠ½ΡƒΡΠΎΠΈΠ΄Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ элСктричСского сигнала с частотой 0,3; 1; 10; 30; 100 ΠΈ 300 ΠœΠ“Ρ†, ΠΏΠΎΠ΄Π°Π²Π°Π΅ΠΌΠΎΠ³ΠΎ Π½Π° кондСнсатор ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°Ρ… 300 ΠΈ 400 К

    High-Frequency Capacitor with Working Substance "Insulator–Undoped Silicon–Insulator"

    Get PDF
    The study of the parameters of capacitors with various working substances is of interest for the design and creation of electronic elements, in particular for the development of high-frequency phase-shifting circuits. The purpose of the work is to calculate the high-frequency capacitance of a capacitor with the working substance insulator undoped silicon insulator at different applied to the capacitor direct current (DC) voltages, measuring signal frequencies and temperatures. A model of such the capacitor is proposed, in which 30 Β΅m thick layer of undoped (intrinsic) crystalline silicon (i-Si) is separated from each of the capacitor electrodes by 1 Β΅m thick insulator layer (silicon dioxide). The dependences of the capacitor capacitance on the DC electrical voltage U on metal electrodes at zero frequency and at the measuring signal frequency of 1 MHz at absolute temperatures T = 300 and 400 K are calculated. It is shown that the real part of the capacitor capacitance increases monotonically, while the imaginary part is negative and non-monotonically depends on U at the temperature T = 300 K. An increase in the real part of the capacitor capacitance up to the geometric capacitance of oxide layers with increasing temperature is due to a decrease in the electrical resistance of i-Si layer. As a result, with an increase in temperature up to 400 K, the real and imaginary parts of the capacitance take constant values independent of U. The capacitance of i-Si layer with an increase in both temperature T and voltage U is shunted by the electrical conductivity of this layer. The phase shift is determined for a sinusoidal electrical signal with a frequency of 0.3, 1, 10, 30, 100, and 300 MHz applied to the capacitor at temperatures 300 and 400 K

    Numerical Modeling of the Dispersed Particles Distribution and FIxation during the Centrifugal Casting with Vertical and Horizontal Rotation Axes

    Full text link
    Numerical modeling of the dispersed particles distribution in the production billets has been carried out. Centrifugal casting machine with vertical and horizontal rotation axes has been used. Hardening particles distribution information has been obtained. Mathematical apparatus has been developed

    A METHOD OF MODIFICATION SURFACE MOULD IN GASIFICATED CASTING TO PURPOSE INCREASE WEAR RESISTANCE

    Full text link
    The article suggests a method for increasing the wear resistance of a casting surface by introducing a pre-prepared insert with dispersed tungsten and titanium particles. The method makes it possible to obtain an extended wear-resistant layer in a metallic casting.Π Π°Π±ΠΎΡ‚Π° Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π° Π² Ρ€Π°ΠΌΠΊΠ°Ρ… выполнСния Π³Ρ€Π°Π½Ρ‚Π° ΠŸΡ€Π΅Π·ΠΈΠ΄Π΅Π½Ρ‚Π° Π Π€ ΠΏΠΎ Π΄ΠΎΠ³ΠΎΠ²ΠΎΡ€Ρƒ β„–14.Y30.18.2874-МК

    Π‘Ρ…Π΅ΠΌΠ° элСмСнта ΠŸΠ΅Π»ΡŒΡ‚ΡŒΠ΅ Π½Π° ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ… с ΠΏΡ€Ρ‹ΠΆΠΊΠΎΠ²Ρ‹ΠΌ пСрСносом элСктронов ΠΏΠΎ Π΄Π΅Ρ„Π΅ΠΊΡ‚Π°ΠΌ

    Get PDF
    The study of thermoelectric properties of crystalline semiconductors with structural defects is of practical interest in the development of radiation-resistant Peltier elements. In this case, the spectrum of energy levels of hydrogen-like impurities and intrinsic point defects in the band gap (energy gap) of crystal plays an important role.The purpose of this work is to analyze the features of the single-electron band model of semiconductors with hopping electron migration both via atoms of hydrogen-like impurities and via their own point triplecharged intrinsic defects in the c- and v-bands, as well as to search for the possibility of their use in the Peltier element in the temperature range, when the transitions of electrons and holes from impurity atoms and/or intrinsic defects to the c- and v-bands can be neglected.For Peltier elements with electron hopping migration we propose: (i) an h-diode containing |d1)and |d2)-regions with hydrogen-like donors of two types in the charge states (0) and (+1) and compensating them hydrogen-like acceptors in the charge state (βˆ’1); (ii) a homogeneous semiconductor containing intrinsic t-defects in the charge states (βˆ’1, 0, +1), as well as ions of donors and acceptors to control the distribution of t-defects over the charge states. The band diagrams of the proposed Peltier elements in equilibrium and upon excitation of a stationary hopping electric current are analyzed.A model of the h-diode containing hydrogen-like donors of two types |d1) and |d2) with hopping migration of electrons between them for 50 % compensation by acceptors is considered. It is shown that in the case of the reverse (forward) electrical bias of the diode, the cooling (heating) of the region of the electric double layer between |d1)and |d2)-regions is possible.A Peltier element based on a semiconductor with point t-defects is considered. It is assumed that the temperature and the concentration of ions of hydrogen-like acceptors and donors are to assure all t-defects to be in the charge state (0). It is shown that in such an element it is possible to cool down the metal-semiconductor contact under a negative electric potential and to heat up the opposite contact under a positive potential.ИсслСдованиС тСрмоэлСктричСских свойств кристалличСских ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² с Π΄Π΅Ρ„Π΅ΠΊΡ‚Π°ΠΌΠΈ структуры прСдставляСт практичСский интСрСс ΠΏΡ€ΠΈ создании Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎ-стойких элСмСнтов ΠŸΠ΅Π»ΡŒΡ‚ΡŒΠ΅. ΠŸΡ€ΠΈ этом Π²Π°ΠΆΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ ΠΈΠ³Ρ€Π°Π΅Ρ‚ спСктр ΡƒΡ€ΠΎΠ²Π½Π΅ΠΉ энСргии Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… примСсСй ΠΈ собствСнных Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹Ρ… Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ² Π² энСргСтичСской Ρ‰Π΅Π»ΠΈ (Π·Π°ΠΏΡ€Π΅Ρ‰Ρ‘Π½Π½ΠΎΠΉ Π·ΠΎΠ½Π΅) кристалла.ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π°Π½Π°Π»ΠΈΠ· особСнностСй одноэлСктронной Π·ΠΎΠ½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² с ΠΏΡ€Ρ‹ΠΆΠΊΠΎΠ²ΠΎΠΉ ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠ΅ΠΉ элСктронов ΠΊΠ°ΠΊ ΠΏΠΎ Π°Ρ‚ΠΎΠΌΠ°ΠΌ Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… примСсСй, Ρ‚Π°ΠΊ ΠΈ ΠΏΠΎ собствСнным Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹ΠΌ трёхзарядным Π΄Π΅Ρ„Π΅ΠΊΡ‚Π°ΠΌ, Π° Ρ‚Π°ΠΊΠΆΠ΅ поиск возмоТности ΠΈΡ… использования Π² элСмСнтС ΠŸΠ΅Π»ΡŒΡ‚ΡŒΠ΅ Π² области Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€, ΠΊΠΎΠ³Π΄Π° ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π°ΠΌΠΈ элСктронов ΠΈ Π΄Ρ‹Ρ€ΠΎΠΊ с Π°Ρ‚ΠΎΠΌΠΎΠ² примСсСй ΠΈ/ΠΈΠ»ΠΈ собствСнных Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ² Π² cΠΈ v-Π·ΠΎΠ½Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π½Π΅Π±Ρ€Π΅Ρ‡ΡŒ.Π’ качСствС элСмСнтов ΠŸΠ΅Π»ΡŒΡ‚ΡŒΠ΅ с ΠΏΡ€Ρ‹ΠΆΠΊΠΎΠ²ΠΎΠΉ ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠ΅ΠΉ элСктронов ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ‹: 1) h-Π΄ΠΈΠΎΠ΄, содСрТащий |d1)ΠΈ |d2)-области с Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ΠΌΠΈ Π΄ΠΎΠ½ΠΎΡ€Π°ΠΌΠΈ Π΄Π²ΡƒΡ… сортов Π² зарядовых состояниях(0) ΠΈ (+1) ΠΈ ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ ΠΈΡ… Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ Π°ΠΊΡ†Π΅ΠΏΡ‚ΠΎΡ€Ρ‹ Π² зарядовом состоянии (βˆ’1); 2) ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½Ρ‹ΠΉ ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊ, содСрТащий собствСнныС t-Π΄Π΅Ρ„Π΅ΠΊΡ‚Ρ‹ Π² зарядовых состояниях (βˆ’1, 0, +1), Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΠΎΠ½Ρ‹ Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² ΠΈ Π°ΠΊΡ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² для управлСния распрСдСлСниСм t-Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ² ΠΏΠΎ зарядовых состояниям. ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ Π·ΠΎΠ½Π½Ρ‹Π΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡ‹ ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΡ‹Ρ… элСмСнтов ΠŸΠ΅Π»ΡŒΡ‚ΡŒΠ΅ Π² равновСсии Β ΠΈ ΠΏΡ€ΠΈ Π²ΠΎΠ·Π±ΡƒΠΆΠ΄Π΅Π½ΠΈΠΈ стационарного ΠΏΡ€Ρ‹ΠΆΠΊΠΎΠ²ΠΎΠ³ΠΎ элСктричСского Ρ‚ΠΎΠΊΠ°.РассмотрСна модСль h-Π΄ΠΈΠΎΠ΄Π°, содСрТащСго Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ Π΄ΠΎΠ½ΠΎΡ€Ρ‹ Π΄Π²ΡƒΡ… сортов |d1) ΠΈ |d2) с ΠΏΡ€Ρ‹ΠΆΠΊΠΎΠ²ΠΎΠΉ ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠ΅ΠΉ ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ элСктронов ΠΏΡ€ΠΈ компСнсации ΠΈΡ… Π½Π° 50 % Π°ΠΊΡ†Π΅ΠΏΡ‚ΠΎΡ€Π°ΠΌΠΈ. Показано, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΌ (прямом) элСктричСском смСщСнии Π΄ΠΈΠΎΠ΄Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡ…Π»Π°ΠΆΠ΄Π΅Π½ΠΈΠ΅ (Π½Π°Π³Ρ€Π΅Π²Π°Π½ΠΈΠ΅) области Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ элСктричСского слоя ΠΌΠ΅ΠΆΠ΄Ρƒ |d1)ΠΈ |d2)-областями.РассмотрСн элСмСнт ΠŸΠ΅Π»ΡŒΡ‚ΡŒΠ΅ Π½Π° основС ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ° с Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹ΠΌΠΈ t-Π΄Π΅Ρ„Π΅ΠΊΡ‚Π°ΠΌΠΈ. ΠŸΡ€ΠΈΠ½ΠΈΠΌΠ°Π»ΠΎΡΡŒ, Ρ‡Ρ‚ΠΎ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΈΠΎΠ½ΠΎΠ² Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… Π°ΠΊΡ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² ΠΈ Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² Ρ‚Π°ΠΊΠΎΠ²Ρ‹, Ρ‡Ρ‚ΠΎ практичСски всС t-Π΄Π΅Ρ„Π΅ΠΊΡ‚Ρ‹ находятся Π² зарядовом состоянии (0). Показано, Ρ‡Ρ‚ΠΎ Π² Ρ‚Π°ΠΊΠΎΠΌ элСмСнтС Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡ…Π»Π°ΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π° ΠΌΠ΅Ρ‚Π°Π»Π»-ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊ, находящСгося ΠΏΠΎΠ΄ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ элСктричСским ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠΌ, ΠΈ Π½Π°Π³Ρ€Π΅Π²Π°Π½ΠΈΠ΅ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π°, ΠΏΠΎΠ΄ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠΌ

    On the Issue of Nitrogen Solubility in Chromium-Nickel Grades of Steels

    Full text link
    The article presents a comparative analysis of the solubility of nitrogen in chromium-nickel grades of steels. It is revealed that the existing theoretical calculations on the solubility of nitrogen in chromium-nickel steels can be applied only to austenitic grades of steels

    Preparation of porous TiNi-Ti alloy by diffusion sintering method and study of its composition, structure and martensitic transformations

    Get PDF
    The study demonstrates a method for controlling not only the phase composition but also the atomic composition of TiNi matrix in porous TiNi-Ti alloys developed for biomedical uses as implants. The alloys were obtained from TiNi powder which was sintered with Ti powder added at as much as 0–10 at%. The structure, phase and chemical composition of the produced TiNi-Ti alloys was investigated with respect to the amount of Ti added into the material. It is shown that in the sintered product containing 5 at% and more of Ti additive, the composition of its TiNi matrix becomes close to equiatomic (with Ti:Ni atomic ratio ~1), and the excessive Ti precipitates as secondary phases Ti2Ni and Ti3Ni4. In parallel, with increase in Ti ad- ditive from 0–10 at%, the structure of the precipitating Ti2Ni type phases changes its morphology from separate spherical or pyramidal precipitates to large dendritic formations. The direct martensitic trans- formation from austenite to martensite in all the samples was found to proceed in two stages and through the R-phase (B2β†’Rβ†’B19β€²). Thermoresistive analysis demonstrated that TiNi-Ti samples with 5 and more at% of Ti had their characteristic starting temperature of martensite transition stabilizing at ~57 Β°C (330 K). This implies that the sample with 5 at% of Ti additive exhibited desired martensite transition temperatures, while containing a minimum concentration of secondary-phase precipitates in its matrix which deteriorate its properties. Thus, for the κ³™rst time, we show that a very simple preparation approach based on sintering powders of TiNi and Ti is capable of producing porous TiNi-Ti alloys with properties optimized for fabricating bone implants

    Experimental study of direct photon emission in K- --> pi- pi0 gamma decay using ISTRA+ detector

    Full text link
    The branching ratio in the charged-pion kinetic energy region of 55 to 90 MeV for the direct photon emission in the K- --> pi- pi0 gamma decay has been measured using in-flight decays detected with the ISTRA+ setup operating in the 25 GeV/c negative secondary beam of the U-70 PS. The value Br(DE)=[0.37+-0.39(stat)+-0.10(syst)]*10^(-5) obtained from the analysis of 930 completely reconstructed events is consistent with the average value of two stopped-kaon experiments, but it differs by 2.5 standard deviations from the average value of three in-flight-kaon experiments. The result is also compared with recent theoretical predictions.Comment: 13 pages, 8 figure

    ENGAGING NUMERICAL MODELING TO ANALYZE METALLURGICAL AND CASTING PROCESSES

    Full text link
    This theses present the numerical modeling of direct current electroslag remelting process and hardening dispersed carbides injection in centrifugal casting process. The computer soft-ware for modeling this processes has been described
    • …
    corecore