21 research outputs found

    Crucial role of SLP-76 and ADAP for neutrophil recruitment in mouse kidney ischemia-reperfusion injury

    Get PDF
    Neutrophils trigger inflammation-induced acute kidney injury (AKI), a frequent and potentially lethal occurrence in humans. Molecular mechanisms underlying neutrophil recruitment to sites of inflammation have proved elusive. In this study, we demonstrate that SLP-76 (SH2 domain–containing leukocyte phosphoprotein of 76 kD) and ADAP (adhesion and degranulation promoting adaptor protein) are involved in E-selectin–mediated integrin activation and slow leukocyte rolling, which promotes ischemia-reperfusion–induced AKI in mice. By using genetically engineered mice and transduced Slp76(−/−) primary leukocytes, we demonstrate that ADAP as well as two N-terminal–located tyrosines and the SH2 domain of SLP-76 are required for downstream signaling and slow leukocyte rolling. The Tec family kinase Bruton tyrosine kinase is downstream of SLP-76 and, together with ADAP, regulates PI3Kγ (phosphoinositide 3-kinase–γ)- and PLCγ2 (phospholipase Cγ2)-dependent pathways. Blocking both pathways completely abolishes integrin affinity and avidity regulation. Thus, SLP-76 and ADAP are involved in E-selectin–mediated integrin activation and neutrophil recruitment to inflamed kidneys, which may underlie the development of life-threatening ischemia-reperfusion–induced AKI in humans

    CXCR2: From Bench to Bedside

    Get PDF
    Leukocyte recruitment to sites of infection or tissue damage plays a crucial role for the innate immune response. Chemokine-dependent signaling in immune cells is a very important mechanism leading to integrin activation and leukocyte recruitment. CXC chemokine receptor 2 (CXCR2) is a prominent chemokine receptor on neutrophils. During the last years, several studies were performed investigating the role of CXCR2 in different diseases. Until now, many CXCR2 inhibitors are tested in animal models and clinical trials and promising results were obtained. This review gives an overview of the structure of CXCR2 and the signaling pathways that are activated following CXCR2 stimulation. We discuss in detail the role of this chemokine receptor in different disease models including acute lung injury, COPD, sepsis, and ischemia-reperfusion-injury. Furthermore, this review summarizes the results of clinical trials which used CXCR2 inhibitors

    Cross-Talk between Shp1 and PIPKIγ Controls Leukocyte Recruitment.

    No full text
    Neutrophil recruitment to the site of inflammation plays a pivotal role in host defense. However, overwhelming activation and accumulation of neutrophils in the tissue may cause tissue damage and autoimmunity due to the release of cytokines, oxidants, and proteases. Neutrophil adhesion in acute inflammation is initiated by activation of αLβ2 (LFA-1), which can be induced by rolling on E-selectin (slowly) or by exposure to the chemokine CXCL1 (rapidly). Despite the clinical importance, cell-intrinsic molecular mechanisms of negative regulation of integrin adhesiveness and neutrophil recruitment are poorly understood. Mice deficient in the tyrosine phosphatase Src homology 2 domain-containing protein tyrosine phosphatase 1 (Shp1) show increased leukocyte adhesion, but the interpretation of these data is limited by the severe global phenotype of these mice. In this study, we used mice with global and myeloid-restricted deletion of Shp1 to study neutrophil arrest, adhesion, crawling, and transendothelial migration in vitro and in vivo. Shp1 deficiency results in increased neutrophil adhesion in vivo; however, neutrophil crawling, transmigration, and chemotaxis were reduced in these mice. Mechanistically, Shp1 binds and controls PIPKIγ activity and, thereby, modulates phosphatidylinositol (4,5)-bisphosphate levels and adhesion. Thus, Shp1 is involved in the deactivation of integrins and regulation of neutrophil recruitment into inflamed tissue

    Cross-Talk between Shp1 and PIPKIγ Controls Leukocyte Recruitment

    No full text
    Neutrophil recruitment to site of inflammation plays a pivotal role in host defense. However, an overwhelming activation and accumulation of neutrophils in the tissue may cause tissue damage and autoimmunity due to release of cytokines, oxidants, and proteases. Neutrophil adhesion in acute inflammation is initiated by activation of α(L)β(2) (LFA-1), which can be induced by rolling on E-selectin (slowly) or by exposure to the chemokine CXCL1 (rapidly). Despite the clinical importance, cell-intrinsic molecular mechanisms of negative regulation of integrin adhesiveness and neutrophil recruitment are poorly understood. Mice deficient in the tyrosine phosphatase Shp1 show increased leukocyte adhesion, but interpretation of these data is limited by the severe global phenotype of these mice. Here, we used mice with global and myeloid-restricted deletion of Shp1 to study neutrophil arrest, adhesion, crawling and transendothelial migration in vitro and in vivo. Shp1 deficiency results in an increased neutrophil adhesion in vivo. However, neutrophil crawling, transmigration and chemotaxis were reduced in these mice. Mechanistically, Shp1 binds and controls PIPKIγ-activity and thereby modulates PtdIns(4,5)P(2) levels and adhesion. Thus, Shp1 is involved in the deactivation of integrins and regulation of neutrophil recruitment into inflamed tissue

    6% Hydroxyethyl starch (HES 130/0.4) diminishes glycocalyx degradation and decreases vascular permeability during systemic and pulmonary inflammation in mice

    No full text
    Abstract Background Increased vascular permeability is a pathophysiological hallmark of sepsis and results in increased transcapillary leakage of plasma fluid, hypovolemia, and interstitial edema formation. 6% hydroxyethyl starch (HES 130/0.4) is commonly used to treat hypovolemia to maintain adequate organ perfusion and oxygen delivery. The present study was designed to investigate the effects of 6% HES 130/0.4 on glycocalyx integrity and vascular permeability in lipopolysaccharide (LPS)-induced pulmonary inflammation and systemic inflammation in mice. Methods 6% HES 130/0.4 or a balanced electrolyte solution (20 ml/kg) was administered intravenously 1 h after cecal ligation and puncture (CLP) or LPS inhalation. Sham-treated animals receiving 6% HES 130/0.4 or the electrolyte solution served as controls. The thickness of the endovascular glycocalyx was visualized by intravital microscopy in lung (LPS inhalation model) or cremaster muscle (CLP model). Syndecan-1, hyaluronic acid, and heparanase levels were measured in blood samples. Vascular permeability in the lungs, liver, kidney, and brain was measured by Evans blue extravasation. Results Both CLP induction and LPS inhalation resulted in increased vascular permeability in the lung, liver, kidney, and brain. 6% HES 130/0.4 infusion led to significantly reduced plasma levels of syndecan-1, heparanase, and hyaluronic acid, which was accompanied by a preservation of the glycocalyx thickness in postcapillary venules of the cremaster (0.78 ± 0.09 μm vs. 1.39 ± 0.10 μm) and lung capillaries (0.81 ± 0.09 μm vs. 1.49 ± 0.12 μm). Conclusions These data suggest that 6% HES 130/0.4 exerts protective effects on glycocalyx integrity and attenuates the increase of vascular permeability during systemic inflammation
    corecore