115 research outputs found

    On the host galaxies of superluminous supernovae.

    Get PDF
    The nature of superluminous supernovae (SLSNe), supernovae whose radiated luminosities are a hundred times greater than normal core collapse supernova events, remains an outstanding question in the transient field. Many models for their production have been postulated, although placing constraints upon these models via the properties of the explosions themselves remains challenging. The potential to unlock their progenitor types may be contained within the properties of their host galaxies. Prior studies have shown SLSNe to preferentially occur within faint, star forming galaxies, highly suggestive of a strong connection between progenitor production and environment conditions. Within this thesis I study the photometric characteristics of a sample of SLSN host galaxies, with a particular focus upon their stellar masses, metallicities and star forming properties. To do this I utilise high resolution imaging of a sample of SLSN host galaxies obtained with the Wide Field Camera 3 on the Hubble Space Telescope to study the global, and sub-galactic environments of SLSN events. By considering the photometric properties of these host galaxies within the near infrared and at rest-frame UV wavelengths, I am effectively able to probe the stellar mass and star forming properties of these environments. When compared to the host galaxies of other well-known core collapse transients, such as long gamma ray bursts and core collapse supernovae, constraints may be placed upon the likely progenitors of SLSNe relative to other transient progenitors. I show that on a global scale, the host galaxies of SLSNe are fainter, more compact, lower mass and less star forming than other core collapse transient host galaxies, which is highly indicative of low metallicity environments. I also highlight the diversity in environments exhibited between different spectral subclasses of SLSNe, which itself is reflective of the likely different progenitor routes for the two different subclasses of event. When considered on a sub-galactic scale, SLSNe events are associated with star forming regions within their galaxies, although at present it remains unclear whether these events are linked with the strongest regions of star formation (which would imply younger, more massive progenitors). Finally, I consider the issue of progenitor metallicity threshold estimations, and the consequences of using both global spectroscopic measurements and mass metallicity relation proxies to determine upper limits to progenitor chemical enrichment. I present a robust model for estimating this, incorporating the key sources of scatter in metallicity estimation which may be applied to a host galaxy populations to determine the presence of a threshold within the progenitor population

    Is the high-energy neutrino event IceCube-200530A associated with a hydrogen-rich superluminous supernova?

    Full text link
    The Zwicky Transient Facility (ZTF) follow-up campaign of alerts released by the IceCube Neutrino Observatory has led to the likely identification of the transient AT2019fdr as the source of the neutrino event IC200530A. AT2019fdr was initially suggested to be a tidal disruption event in a Narrow-Line Seyfert 1 galaxy. However, the combination of its spectral properties, color evolution, and feature-rich light curve suggests that AT2019fdr may be a Type IIn superluminous supernova. In the latter scenario, IC200530A may have been produced via inelastic proton-proton collisions between the relativistic protons accelerated at the forward shock and the cold protons of the circumstellar medium. Here, we investigate this possibility and find that at most 4.6×1024.6\times 10^{-2} muon neutrino and antineutrino events are expected to be detected by the IceCube Neutrino Observatory within 394394 days of discovery in the case of excellent discrimination of the atmospheric background. After correcting for the Eddington bias, which occurs when a single cosmic neutrino event is adopted to infer the neutrino emission at the source, we conclude that IC200530A may originate from the hydrogen-rich superluminous supernova AT2019fdr.Comment: 16 pages, including 10 figures. Improved modeling for neutrino production, conclusions unchanged, matches version accepted for publication in Ap

    Flight of the Bumblebee: the Early Excess Flux of Type Ia Supernova 2023bee revealed by TESSTESS, SwiftSwift and Young Supernova Experiment Observations

    Full text link
    We present high-cadence ultraviolet through near-infrared observations of the Type Ia supernova (SN Ia) 2023bee in NGC~2708 (D=32±3D = 32 \pm 3 Mpc), finding excess flux in the first days after explosion relative to the expected power-law rise from an expanding fireball. This deviation from typical behavior for SNe Ia is particularly obvious in our 10-minute cadence TESSTESS light curve and SwiftSwift UV data. Compared to a few other normal SNe Ia with detected early excess flux, the excess flux in SN 2023bee is redder in the UV and less luminous. We present optical spectra of SN 2023bee, including two spectra during the period where the flux excess is dominant. At this time, the spectra are similar to those of other SNe Ia but with weaker Si II, C II and Ca II absorption lines, perhaps because the excess flux creates a stronger continuum. We compare the data to several theoretical models that have been proposed to explain the early flux excess in SNe Ia. Interaction with either a nearby companion star or close-in circumstellar material is expected to produce a faster evolution than seen in the data. Radioactive material in the outer layers of the ejecta, either from a double detonation explosion or simply an explosion with a 56^{56}Ni clump near the surface, can not fully reproduce the evolution either, likely due to the sensitivity of early UV observable to the treatment of the outer part of ejecta in simulation. We conclude that no current model can adequately explain the full set of observations. We find that a relatively large fraction of nearby, bright SNe Ia with high-cadence observations have some amount of excess flux within a few days of explosion. Considering potential asymmetric emission, the physical cause of this excess flux may be ubiquitous in normal SNe Ia.Comment: 21 pages, 12 figures. Accepted by the astrophysical journa

    SN 2022oqm: A Multi-peaked Calcium-rich Transient from a White Dwarf Binary Progenitor System

    Full text link
    We present the photometric and spectroscopic evolution of SN 2022oqm, a nearby multi-peaked hydrogen- and helium-weak calcium-rich transient (CaRT). SN 2022oqm was detected 19.9 kpc from its host galaxy, the face-on spiral galaxy NGC 5875. Extensive spectroscopic coverage reveals a hot (T >= 40,000 K) continuum and carbon features observed ~1 day after discovery, SN Ic-like photospheric-phase spectra, and strong forbidden calcium emission starting 38 days after discovery. SN 2022oqm has a relatively high peak luminosity (MB = -17 mag) for CaRTs, making it an outlier in the population. We determine that three power sources are necessary to explain SN 2022oqm's light curve, with each power source corresponding to a distinct peak in its light curve. The first peak of the light curve is powered by an expanding blackbody with a power law luminosity, consistent with shock cooling by circumstellar material. Subsequent peaks are powered by a double radioactive decay model, consistent with two separate sources of photons diffusing through an optically thick ejecta. From the optical light curve, we derive an ejecta mass and 56Ni mass of ~0.89 solar masses and ~0.09 solar masses, respectively. Detailed spectroscopic modeling reveals ejecta that is dominated by intermediate-mass elements, with signs that Fe-peak elements have been well-mixed. We discuss several physical origins for SN 2022oqm and favor a white dwarf progenitor model. The inferred ejecta mass points to a surprisingly massive white dwarf, challenging models of CaRT progenitors.Comment: 33 pages, 17 figures, 5 tables, Submitted to Ap

    Simvastatin in Critically Ill Patients with Covid-19

    Get PDF
    BACKGROUND: The efficacy of simvastatin in critically ill patients with coronavirus disease 2019 (Covid-19) is unclear. METHODS: In an ongoing international, multifactorial, adaptive platform, randomized, controlled trial, we evaluated simvastatin (80 mg daily) as compared with no statin (control) in critically ill patients with Covid-19 who were not receiving statins at baseline. The primary outcome was respiratory and cardiovascular organ support-free days, assessed on an ordinal scale combining in-hospital death (assigned a value of -1) and days free of organ support through day 21 in survivors; the analyis used a Bayesian hierarchical ordinal model. The adaptive design included prespecified statistical stopping criteria for superiority (\u3e99% posterior probability that the odds ratio was \u3e1) and futility (\u3e95% posterior probability that the odds ratio was \u3c1.2). RESULTS: Enrollment began on October 28, 2020. On January 8, 2023, enrollment was closed on the basis of a low anticipated likelihood that prespecified stopping criteria would be met as Covid-19 cases decreased. The final analysis included 2684 critically ill patients. The median number of organ support-free days was 11 (interquartile range, -1 to 17) in the simvastatin group and 7 (interquartile range, -1 to 16) in the control group; the posterior median adjusted odds ratio was 1.15 (95% credible interval, 0.98 to 1.34) for simvastatin as compared with control, yielding a 95.9% posterior probability of superiority. At 90 days, the hazard ratio for survival was 1.12 (95% credible interval, 0.95 to 1.32), yielding a 91.9% posterior probability of superiority of simvastatin. The results of secondary analyses were consistent with those of the primary analysis. Serious adverse events, such as elevated levels of liver enzymes and creatine kinase, were reported more frequently with simvastatin than with control. CONCLUSIONS: Although recruitment was stopped because cases had decreased, among critically ill patients with Covid-19, simvastatin did not meet the prespecified criteria for superiority to control. (REMAP-CAP ClinicalTrials.gov number, NCT02735707.

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    Flight of the bumblebee : the early excess flux of Type Ia supernova 2023bee revealed by TESS, Swift, and Young Supernova Experiment observations

    Get PDF
    We present high-cadence ultraviolet through near-infrared observations of the Type Ia supernova (SN Ia) 2023bee at D = 32 ± 3 Mpc, finding excess flux in the first days after explosion, particularly in our 10 minutes cadence TESS light curve and Swift UV data. Compared to a few other normal SNe Ia with early excess flux, the excess flux in SN 2023bee is redder in the UV and less luminous. We present optical spectra of SN 2023bee, including two spectra during the period where the flux excess is dominant. At this time, the spectra are similar to those of other SNe Ia but with weaker Si ii, C ii, and Ca ii absorption lines, perhaps because the excess flux creates a stronger continuum. We compare the data to several theoretical models on the origin of early excess flux in SNe Ia. Interaction with either the companion star or close-in circumstellar material is expected to produce a faster evolution than observed. Radioactive material in the outer layers of the ejecta, either from double detonation explosion or from a 56Ni clump near the surface, cannot fully reproduce the evolution either, likely due to the sensitivity of early UV observable to the treatment of the outer part of ejecta in simulation. We conclude that no current model can adequately explain the full set of observations. We find that a relatively large fraction of nearby, bright SNe Ia with high-cadence observations have some amount of excess flux within a few days of explosion. Considering potential asymmetric emission, the physical cause of this excess flux may be ubiquitous in normal SNe Ia

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2·72 (95% uncertainty interval [UI] 2·66–2·79) in 2000 to 2·31 (2·17–2·46) in 2019. Global annual livebirths increased from 134·5 million (131·5–137·8) in 2000 to a peak of 139·6 million (133·0–146·9) in 2016. Global livebirths then declined to 135·3 million (127·2–144·1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2·1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27·1% (95% UI 26·4–27·8) of global livebirths. Global life expectancy at birth increased from 67·2 years (95% UI 66·8–67·6) in 2000 to 73·5 years (72·8–74·3) in 2019. The total number of deaths increased from 50·7 million (49·5–51·9) in 2000 to 56·5 million (53·7–59·2) in 2019. Under-5 deaths declined from 9·6 million (9·1–10·3) in 2000 to 5·0 million (4·3–6·0) in 2019. Global population increased by 25·7%, from 6·2 billion (6·0–6·3) in 2000 to 7·7 billion (7·5–8·0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58·6 years (56·1–60·8) in 2000 to 63·5 years (60·8–66·1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019
    corecore