135 research outputs found

    Dynamic Response of Ising System to a Pulsed Field

    Full text link
    The dynamical response to a pulsed magnetic field has been studied here both using Monte Carlo simulation and by solving numerically the meanfield dynamical equation of motion for the Ising model. The ratio R_p of the response magnetisation half-width to the width of the external field pulse has been observed to diverge and pulse susceptibility \chi_p (ratio of the response magnetisation peak height and the pulse height) gives a peak near the order-disorder transition temperature T_c (for the unperturbed system). The Monte Carlo results for Ising system on square lattice show that R_p diverges at T_c, with the exponent νz2.0\nu z \cong 2.0, while \chi_p shows a peak at TceT_c^e, which is a function of the field pulse width δt\delta t. A finite size (in time) scaling analysis shows that Tce=Tc+C(δt)1/xT_c^e = T_c + C (\delta t)^{-1/x}, with x=νz2.0x = \nu z \cong 2.0. The meanfield results show that both the divergence of R and the peak in \chi_p occur at the meanfield transition temperature, while the peak height in χp(δt)y\chi_p \sim (\delta t)^y, y1y \cong 1 for small values of δt\delta t. These results also compare well with an approximate analytical solution of the meanfield equation of motion.Comment: Revtex, Eight encapsulated postscript figures, submitted to Phys. Rev.

    On large deviation properties of Erdos-Renyi random graphs

    Full text link
    We show that large deviation properties of Erd\"os-R\'enyi random graphs can be derived from the free energy of the qq-state Potts model of statistical mechanics. More precisely the Legendre transform of the Potts free energy with respect to lnq\ln q is related to the component generating function of the graph ensemble. This generalizes the well-known mapping between typical properties of random graphs and the q1q\to 1 limit of the Potts free energy. For exponentially rare graphs we explicitly calculate the number of components, the size of the giant component, the degree distributions inside and outside the giant component, and the distribution of small component sizes. We also perform numerical simulations which are in very good agreement with our analytical work. Finally we demonstrate how the same results can be derived by studying the evolution of random graphs under the insertion of new vertices and edges, without recourse to the thermodynamics of the Potts model.Comment: 38 pages, 9 figures, Latex2e, corrected and extended version including numerical simulation result

    Ground state numerical study of the three-dimensional random field Ising model

    Full text link
    The random field Ising model in three dimensions with Gaussian random fields is studied at zero temperature for system sizes up to 60^3. For each realization of the normalized random fields, the strength of the random field, Delta and a uniform external, H is adjusted to find the finite-size critical point. The finite-size critical point is identified as the point in the H-Delta plane where three degenerate ground states have the largest discontinuities in the magnetization. The discontinuities in the magnetization and bond energy between these ground states are used to calculate the magnetization and specific heat critical exponents and both exponents are found to be near zero.Comment: 10 pages, 6 figures; new references and small changes to tex

    Multifractals of Normalized First Passage Time in Sierpinski Gasket

    Full text link
    The multifractal behavior of the normalized first passage time is investigated on the two dimensional Sierpinski gasket with both absorbing and reflecting barriers. The normalized first passage time for Sinai model and the logistic model to arrive at the absorbing barrier after starting from an arbitrary site, especially obtained by the calculation via the Monte Carlo simulation, is discussed numerically. The generalized dimension and the spectrum are also estimated from the distribution of the normalized first passage time, and compared with the results on the finitely square lattice.Comment: 10 pages, Latex, with 3 figures and 1 table. to be published in J. Phys. Soc. Jpn. Vol.67(1998

    Percolation in three-dimensional random field Ising magnets

    Get PDF
    The structure of the three-dimensional random field Ising magnet is studied by ground state calculations. We investigate the percolation of the minority spin orientation in the paramagnetic phase above the bulk phase transition, located at [Delta/J]_c ~= 2.27, where Delta is the standard deviation of the Gaussian random fields (J=1). With an external field H there is a disorder strength dependent critical field +/- H_c(Delta) for the down (or up) spin spanning. The percolation transition is in the standard percolation universality class. H_c ~ (Delta - Delta_p)^{delta}, where Delta_p = 2.43 +/- 0.01 and delta = 1.31 +/- 0.03, implying a critical line for Delta_c < Delta <= Delta_p. When, with zero external field, Delta is decreased from a large value there is a transition from the simultaneous up and down spin spanning, with probability Pi_{uparrow downarrow} = 1.00 to Pi_{uparrow downarrow} = 0. This is located at Delta = 2.32 +/- 0.01, i.e., above Delta_c. The spanning cluster has the fractal dimension of standard percolation D_f = 2.53 at H = H_c(Delta). We provide evidence that this is asymptotically true even at H=0 for Delta_c < Delta <= Delta_p beyond a crossover scale that diverges as Delta_c is approached from above. Percolation implies extra finite size effects in the ground states of the 3D RFIM.Comment: replaced with version to appear in Physical Review

    Effects of Pore Walls and Randomness on Phase Transitions in Porous Media

    Full text link
    We study spin models within the mean field approximation to elucidate the topology of the phase diagrams of systems modeling the liquid-vapor transition and the separation of He3^3--He4^4 mixtures in periodic porous media. These topologies are found to be identical to those of the corresponding random field and random anisotropy spin systems with a bimodal distribution of the randomness. Our results suggest that the presence of walls (periodic or otherwise) are a key factor determining the nature of the phase diagram in porous media.Comment: REVTeX, 11 eps figures, to appear in Phys. Rev.

    Biodegradable starch-based composites: effect of micro and nanoreinforcements on composite properties

    Get PDF
    Thermoplastic starch (TPS) matrix was reinforced with various kenaf bast cellulose nanofiber loadings (0–10 wt%). Thin films were prepared by casting and evaporating the mixture of aqueous suspension of nanofibers (NFs), starch, and glycerol which underwent gelatinization process at the same time. Moreover, raw fibers (RFs) reinforced TPS films were prepared with the same contents and conditions. The effects of filler type and loading on different characteristics of prepared materials were studied using transmission and scanning electron microscopies, X-ray diffractometry, Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and moisture absorption analysis. Obtained results showed a homogeneous dispersion of NFs within the TPS matrix and strong association between the filler and matrix. Moreover, addition of nanoreinforcements decreased the moisture sensitivity of the TPS film significantly. About 20 % decrease in moisture content at equilibrium was observed with addition of 10 wt% NFs while this value was only 5.7 % for the respective RFs reinforced film

    Cardiosphere-derived cells suppress allogeneic lymphocytes by production of PGE2 acting via the EP4 receptor

    Get PDF
    derived cells (CDCs) are a cardiac progenitor cell population, which have been shown to possess cardiac regenerative properties and can improve heart function in a variety of cardiac diseases. Studies in large animal models have predominantly focussed on using autologous cells for safety, however allogeneic cell banks would allow for a practical, cost-effective and efficient use in a clinical setting. The aim of this work was to determine the immunomodulatory status of these cells using CDCs and lymphocytes from 5 dogs. CDCs expressed MHC I but not MHC II molecules and in mixed lymphocyte reactions demonstrated a lack of lymphocyte proliferation in response to MHC-mismatched CDCs. Furthermore, MHC-mismatched CDCs suppressed lymphocyte proliferation and activation in response to Concanavalin A. Transwell experiments demonstrated that this was predominantly due to direct cell-cell contact in addition to soluble mediators whereby CDCs produced high levels of PGE2 under inflammatory conditions. This led to down-regulation of CD25 expression on lymphocytes via the EP4 receptor. Blocking prostaglandin synthesis restored both, proliferation and activation (measured via CD25 expression) of stimulated lymphocytes. We demonstrated for the first time in a large animal model that CDCs inhibit proliferation in allo-reactive lymphocytes and have potent immunosuppressive activity mediated via PGE2
    corecore