The random field Ising model in three dimensions with Gaussian random fields
is studied at zero temperature for system sizes up to 60^3. For each
realization of the normalized random fields, the strength of the random field,
Delta and a uniform external, H is adjusted to find the finite-size critical
point. The finite-size critical point is identified as the point in the H-Delta
plane where three degenerate ground states have the largest discontinuities in
the magnetization. The discontinuities in the magnetization and bond energy
between these ground states are used to calculate the magnetization and
specific heat critical exponents and both exponents are found to be near zero.Comment: 10 pages, 6 figures; new references and small changes to tex