82 research outputs found

    Experimental investigation on the ability of macro-encapsulated polyurethane to resist cyclic damaging actions in self-repaired cement-based elements

    Get PDF
    The use of polymer precursors as repairing agents in capsule-based self-healing systems has been extensively studied in recent years. In particular, the effectiveness of macro-encapsulated polyurethane in restoring both watertightness and mechanical properties has been demonstrated at the laboratory level, and the experimental methods to test the effectiveness have been validated following pre-standard procedures. However, the use of macro-capsules containing polyurethane precursors for field applications has not been sufficiently implemented yet. For these systems to become appealing to the construction industry, it is essential to further characterize the self-healing effect in terms of stability in time, namely, to investigate the behavior of the self-healing system when subjected to recurring actions that can affect structures in time, after cracking and subsequent self-repairing. The goal of this study was to characterize the ability of commercial polyurethane foams to withstand cyclic flexural actions and repeated temperature variations after release from cementitious macro-capsules embedded in mortar specimens. The specimens were tested immediately after pre-cracking and self-repairing to characterize the initial sealing efficiency through a water-flow test. The same test was repeated at prescribed time intervals to analyze the evolution of the sealing efficiency with the applied mechanical and thermal stresses. The results showed that the proposed system has good stability against the selected damaging actions and confirmed the potential of encapsulated polyurethane for self-healing applications

    An Experimental Validation of Phase-Based Motion Magnification for Structures with Developing Cracks and Time-Varying Configurations

    Get PDF
    In this study, Computer Vision and Phase-Based Motion Magnification (PBMM) are validated for continuous Structural Health Monitoring (SHM) purposes. The aim is to identify the exact instant of occurrence for damage or abrupt structural changes from video-extracted, very low amplitude (barely visible) vibrations. The study presents three experimental datasets: a box beam with multiple saw cuts of different lengths and angles, a beam with a full rectangular cross section and a mass added at the tip, and the spar of a prototype High-Aspect-Ratio wing. Both mode-shape- and frequency-based approaches are considered, showing the potential to identify the severity and position of the damage as well A high-definition, high-speed camera and a low-cost commercial alternative have been successfully utilised for these video acquisitions. Finally, the technique is also preliminarily tested for outdoor applications with smartphone cameras

    SIMULATION, PLANNING AND CONTROL OF A CENTRAL COMPRESSED AIR PLANT FOR A MORE EFFICIENT ENERGY USE

    Get PDF
    Abstract: The paper describes one out of several phases of the work being carried out within the Energy Management Educational Laboratory to provide with a complementary tool the understanding and solving of the energy transformation process from the central plant to the end user. The management of energy flows in a compressed air plant is made up of several units, such as the compressors, the intercooling, the drying section, the storage tank(s), the distribution network, the end-user, etc…, and last but not least, the control system. The target is to find the best system configuration and control in order to save energy and contribute to a "state of the art" running of the plant. The simulation is going to represent a plant with two centrifugal compressors in speed control. Centrifugal compressors are claimed to be the most suitable system for a distribution network with storage units. Through different hypothesis on the system configuration (even including the effect of holes and joints in the pipe lines), people in front of the screen (either the plant manager or a student) can investigate what results from of several types of control and choose the best, according with various strategies: for instance, minimizing energy costs

    Durability of self-healing cementitious systems with encapsulated polyurethane evaluated with a new pre-standard test method

    Get PDF
    This work reports on the self-healing capabilities of mortar specimens with polyurethane encapsulated in two types of cementitious macro-capsules, by comparison with the performance of mortar specimens using the same healing agent encapsulated in glass capsules, as tested in an inter-laboratory testing campaign following a pre-standard procedure. This comparison was performed with a twofold objective of checking the robustness of such pre-standard procedure for varying types of capsules and testing the effectiveness of a new type of cementitious capsule that has never been used before in durability tests. The testing procedure was developed in the framework of the EU COST Action SARCOS. First, the specimens were pre-cracked via three-point bending followed by an active crack width control technique. Then, the self-healing effect was characterised in terms of water permeability reduction. The cementitious capsules offered equivalent or better performance compared to the glass capsules used in the inter-laboratory testing. The average sealing efficiency for the specimens containing cementitious capsules ranged from 54 to 74%, while for glass macro-capsules it was equal to 56%. It was also observed that when applying the pre-standard procedure to test specimens containing capsules with comparable size and geometric arrangement, the same results were obtained in different repetitions of the test. The results obtained confirmed the possibility to use the cementitious capsules as a valid macro-encapsulation system, offering additional advantages compared to glass capsules. The repeatability of the results corroborated the robustness of the adopted testing procedure, highlighting its potential for further standardisation

    QueryOR: a comprehensive web platform for genetic variant analysis and prioritization

    Get PDF
    Background: Whole genome and exome sequencing are contributing to the extraordinary progress in the study of human genetic variants. In this fast developing field, appropriate and easily accessible tools are required to facilitate data analysis. Results: Here we describe QueryOR, a web platform suitable for searching among known candidate genes as well as for finding novel gene-disease associations. QueryOR combines several innovative features that make it comprehensive, flexible and easy to use. Instead of being designed on specific datasets, it works on a general XML schema specifying formats and criteria of each data source. Thanks to this flexibility, new criteria can be easily added for future expansion. Currently, up to 70 user-selectable criteria are available, including a wide range of gene and variant features. Moreover, rather than progressively discarding variants taking one criterion at a time, the prioritization is achieved by a global positive selection process that considers all transcript isoforms, thus producing reliable results. QueryOR is easy to use and its intuitive interface allows to handle different kinds of inheritance as well as features related to sharing variants in different patients. QueryOR is suitable for investigating single patients, families or cohorts. Conclusions: QueryOR is a comprehensive and flexible web platform eligible for an easy user-driven variant prioritization. It is freely available for academic institutions at http://queryor.cribi.unipd.it/

    Accelerated carbonation of ordinary Portland cement paste and its effects on microstructure and transport properties

    Get PDF
    Coupling of carbonation and chlorides ingress mechanisms is very common in concrete under certain exposure conditions such as coastal environments. The aggravation/ mitigation of corrosion by the existence of carbonation lies on the fact that microstructural changes due to carbonation result in changes on the transport properties of the material. In this study we investigate and quantify evolving transport properties of ordinary Portland cement paste, such as porosity, tortuosity and intrinsic permeability. Dual X-ray micro computed tomography (micro CT) is used for the quantification of porosity. Furthermore Dynamic Vapour Sorption (DVS) measurements are carried out to resolve water retention and relative permeability curves. The authors expect to provide insights into the mechanisms of accelerated carbonation in both types of cement paste, as well as data for input and validation of numerical and analytical models on this degradation phenomenon

    Vascular endothelial growth factor (VEGF) and VEGF receptors in diabetic nephropathy: expression studies in biopsies of type 2 diabetic patients.

    Get PDF
    Vascular endothelial growth factor (VEGF) is involved in the pathogenesis of diabetic retinopathy but its role in diabetic nephropathy is only speculative so far. It has been shown that in renal cortex of normal kidneys, glomerular and tubular epithelial cells express VEGF and that VEGF 165 is the predominant isoform. Two VEGF receptors, KDR (kinase domain region) and Flt-1 (fms-like tyrosine kinase) are co-expressed by glomerular and peritubular capillary endothelial cells. However, VEGF and VEGF receptors are predominantly expressed at glomerular level. We recently demonstrated that in type 2 diabetic patients glomerular qualitative and quantitative changes of VEGF mRNA expression are associated with functional and structural renal changes. In the present work we focused on the tubulo-interstitial compartment; by reverse transcription/polymerase chain reaction (RT/PCR) we evaluated the expression of VEGF, KDR, Flt-1 and the relationship between the two main type of VEGF isoforms, VEGF121 and VEGF165 in the tubulo-interstitium of type 2 diabetic patients. Patients were divided in three category on the basis of renal structure pattern: CI, with normal or near normal renal structure; CII, with glomerular and tubulo-interstitial lesions occurring in parallel (typical diabetic nephropathology); CIII, with atypical pattern of renal injury, i.e., more severe tubulo-interstitial and vascular than glomerular changes. Comparison between the two cortical compartments revealed that, both in glomeruli and in tubulo-interstitium. VEGF121 isoform exceed VEGF165 while Flt-1 was significantly lower in glomeruli. CIII patients had the lowest tubulo-interstitial level of VEGF and Flt-1 mRNAs. These results suggest that the transcriptional shifting from VEGF165 to VEGF121 isoform and the unbalanced FIt-1 expression between tubulo-interstitium and glomeruli could be involved in the pathogenesis of diabetic nephropathy. Furthermore, at least in CIII patients, down-regulation of the VEGF-Flt-1 system could be involved in the mechanisms leading to tubulointerstitial diabetic lesions

    Evaluation of test methods for self-healing concrete with macrocapsules by inter-laboratory testing

    Get PDF
    Self-healing of concrete is a promising way to increase the service life of structures. Innovative research is being performed, yet it is difficult to compare results due to a lack of standardised test methods. In the framework of the COST action SARCOS (CA15202) [1] six different interlaboratory tests are being executed, in which different test methods are being evaluated for six self-healing approaches. Here, the results of the inter-laboratory test concerning mortar and concrete with macrocapsules filled with a polyurethane healing agent will be discussed. The specimens were manufactured in one laboratory and then shipped to the other five participating laboratories. All six laboratories evaluated two test methods: a water permeability test and a capillary water absorption test. For the water permeability test, mortar specimens were cracked and afterwards their crack width was controlled using an active control technique. Due to the active crack control, the crack width of 90% of the samples deviated by less than 10 ÎĽm from the target of 300 ÎĽm. This made it more straightforward to compare the permeability test results, which indicated a similar sealing efficiency for several of the laboratories. For the capillary water absorption test, concrete specimens were cracked in a crack-width-controlled three-point bending test setup without active control after unloading. Compared to the water permeability specimens, there was a lot more variation on the crack width of the capillary water absorption specimens. The variability on the crack width and differences in quality of waterproofing resulted in diverging findings in the capillary water absorption test
    • …
    corecore