50 research outputs found

    Estimating and comparing thermal performance curves

    Get PDF
    Abstract I show how one can estimate the shape of a thermal performance curve using information theory. This approach ranks plausible models by their Akaike information criterion (AIC), which is a measure of a model's ability to describe the data discounted by the model's complexity. I analyze previously published data to demonstrate how one applies this approach to describe a thermal performance curve. This exemplary analysis produced two interesting results. First, a model with a very high r 2 (a modified Gaussian function) appeared to overfit the data. Second, the model favored by information theory (a Gaussian function) has been used widely in optimality studies of thermal performance curves. Finally, I discuss the choice between regression and ANOVA when comparing thermal performance curves and highlight a superior method called template mode of variation. Much progress can be made by abandoning traditional methods for a method that combines information theory with template mode of variation.

    More oxygen during development enhanced flight performance but not thermal tolerance of Drosophila melanogaster

    Get PDF
    High temperatures can stress animals by raising the oxygen demand above the oxygen supply. Consequently, animals under hypoxia could be more sensitive to heating than those exposed to normoxia. Although support for this model has been limited to aquatic animals, oxygen supply might limit the heat tolerance of terrestrial animals during energetically demanding activities. We evaluated this model by studying the flight performance and heat tolerance of flies (Drosophila melanogaster) acclimated and tested at different concentrations of oxygen (12%, 21%, and 31%). We expected that flies raised at hypoxia would develop into adults that were more likely to fly under hypoxia than would flies raised at normoxia or hyperoxia. We also expected flies to benefit from greater oxygen supply during testing. These effects should have been most pronounced at high temperatures, which impair locomotor performance. Contrary to our expectations, we found little evidence that flies raised at hypoxia flew better when tested at hypoxia or tolerated extreme heat better than did flies raised at normoxia or hyperoxia. Instead, flies raised at higher oxygen levels performed better at all body temperatures and oxygen concentrations. Moreover, oxygen supply during testing had the greatest effect on flight performance at low temperature, rather than high temperature. Our results poorly support the hypothesis that oxygen supply limits performance at high temperatures, but do support the idea that hyperoxia during development improves performance of flies later in life

    PII: S0306-4565(01)00084-5

    Get PDF
    Abstract Eastern fence lizards (Sceloporus undulatus) exhibit a distinct thermal preference that might be related to the thermal optimum for physiological performance. Sprint speed and treadmill endurance of S. undulatus were insensitive to body temperature in the ranges of 28-381C and 25-361C, respectively. Both locomotor and digestive performances are optimized at the preferred body temperature of S. undulatus, but thermoregulatory behavior is more closely related to the thermal sensitivity of digestive performance than that of locomotor performance.

    Isopods Failed to Acclimate Their Thermal Sensitivity of Locomotor Performance During Predictable or Stochastic Cooling

    Get PDF
    Most organisms experience environments that vary continuously over time, yet researchers generally study phenotypic responses to abrupt and sustained changes in environmental conditions. Gradual environmental changes, whether predictable or stochastic, might affect organisms differently than do abrupt changes. To explore this possibility, we exposed terrestrial isopods (Porcellio scaber) collected from a highly seasonal environment to four thermal treatments: (1) a constant 20 degrees C; (2) a constant 10 degrees C; (3) a steady decline from 20 degrees to 10 degrees C; and (4) a stochastic decline from 20 degrees to 10 degrees C that mimicked natural conditions during autumn. After 45 days, we measured thermal sensitivities of running speed and thermal tolerances (critical thermal maximum and chill-coma recovery time). Contrary to our expectation, thermal treatments did not affect the thermal sensitivity of locomotion; isopods from all treatments ran fastest at 33 degrees to 34 degrees C and achieved more than 80% of their maximal speed over a range of 10 degrees to 11 degrees C. Isopods exposed to a stochastic decline in temperature tolerated cold the best, and isopods exposed to a constant temperature of 20 degrees C tolerated cold the worst. No significant variation in heat tolerance was observed among groups. Therefore, thermal sensitivity and heat tolerance failed to acclimate to any type of thermal change, whereas cold tolerance acclimated more during stochastic change than it did during abrupt change

    Bergmann\u27s Clines in Ectotherms: Illustrating a Life-History Perspective with Sceloporine Lizards

    Get PDF
    The generality and causes of Bergmann\u27s rule have been debated vigorously in the last few years, but Bergmann\u27s clines are rarely explained in the context of life-history theory. We used both traditional and phylogenetic comparative analyses to explore the causes of latitudinal and thermal clines in the body size of the eastern fence lizard (Sceloporus undulatus). The proximate mechanism for larger body sizes in colder environments is delayed maturation, which results in a greater fecundity but a lower survival to maturity. Life-history theory predicts that a higher survivorship of juveniles in colder environments can favor the evolution of a Bergmann\u27s cline. Consistent with this theory, lizards in colder environments survive better as juveniles and delay maturation until reaching a larger body size than that of lizards in warmer environments. We expect similar relationships among temperature, survivorship, and age/size at maturity exist in other ectotherms that exhibit Bergmann\u27s clines. However, life-history traits of S. undulatus were more strongly related to latitude than they were to temperature, indicating that both abiotic and biotic factors should be considered as causes of Bergmann\u27s clines. Nonetheless, analyses of the costs and benefits of particular body sizes in different thermal environments will enhance our understanding of geographic variation

    Oxygen and temperature affect cell sizes differently among tissues and between sexes of Drosophila melanogaster

    Get PDF
    Spatio-temporal gradients in thermal and oxygen conditions trigger evolutionary and developmental responses in ectotherms’ body size and cell size, which are commonly interpreted as adaptive. However, the evidence for cell-size responses is fragmentary, as cell size is typically assessed in single tissues. In a laboratory experiment, we raised genotypes of Drosophila melanogaster at all combinations of two temperatures (16 C^{\circ}C or 25 C^{\circ}C) and two oxygen levels (10% or 22%) and measured body size and the sizes of cells in different tissues. For each sex, we measured epidermal cells in a wing and a leg and ommatidial cells of an eye. For males, we also measured epithelial cells of a Malpighian tubule and muscle cells of a flight muscle. On average, females emerged at a larger body size than did males, having larger cells in all tissues. Flies of either sex emerged at a smaller body size when raised under warm or hypoxic conditions. Development at 25 C^{\circ}C resulted in smaller cells in most tissues. Development under hypoxia resulted in smaller cells in some tissues, especially among females. Altogether, our results show thermal and oxygen conditions trigger shifts in adult size, coupled with the systemic orchestration of cell sizes throughout the body of a fly. The nature of these patterns supports a model in which an ectotherm adjusts its life-history traits and cellular composition to prevent severe hypoxia at the cellular level. However, our results revealed some inconsistencies linked to sex, cell type, and environmental parameters, which suggest caution in translating information obtained for single type of cells to the organism as a whole

    Seasonal Patterns of Body Temperature Daily Rhythms in Group-Living Cape Ground Squirrels Xerus inauris

    Get PDF
    Organisms respond to cyclical environmental conditions by entraining their endogenous biological rhythms. Such physiological responses are expected to be substantial for species inhabiting arid environments which incur large variations in daily and seasonal ambient temperature (Ta). We measured core body temperature (Tb) daily rhythms of Cape ground squirrels Xerus inauris inhabiting an area of Kalahari grassland for six months from the Austral winter through to the summer. Squirrels inhabited two different areas: an exposed flood plain and a nearby wooded, shady area, and occurred in different social group sizes, defined by the number of individuals that shared a sleeping burrow. Of a suite of environmental variables measured, maximal daily Ta provided the greatest explanatory power for mean Tb whereas sunrise had greatest power for Tb acrophase. There were significant changes in mean Tb and Tb acrophase over time with mean Tb increasing and Tb acrophase becoming earlier as the season progressed. Squirrels also emerged from their burrows earlier and returned to them later over the measurement period. Greater increases in Tb, sometimes in excess of 5°C, were noted during the first hour post emergence, after which Tb remained relatively constant. This is consistent with observations that squirrels entered their burrows during the day to ‘offload’ heat. In addition, greater Tb amplitude values were noted in individuals inhabiting the flood plain compared with the woodland suggesting that squirrels dealt with increased environmental variability by attempting to reduce their Ta-Tb gradient. Finally, there were significant effects of age and group size on Tb with a lower and less variable Tb in younger individuals and those from larger group sizes. These data indicate that Cape ground squirrels have a labile Tb which is sensitive to a number of abiotic and biotic factors and which enables them to be active in a harsh and variable environment
    corecore