94 research outputs found

    Sox2 Uses Multiple Domains to Associate with Proteins Present in Sox2-Protein Complexes

    Get PDF
    Master regulators, such as Sox2, Oct4 and Nanog, control complex gene networks necessary for the self-renewal and pluripotency of embryonic stem cells (ESC). These master regulators associate with co-activators and co-repressors to precisely control their gene targets. Recent studies using proteomic analysis have identified a large, diverse group of co-activators and co-repressors that associate with master regulators, including Sox2. In this report, we examined the size distribution of nuclear protein complexes containing Sox2 and its associated proteins HDAC1, Sall4 and Lin28. Interestingly, we determined that Sox2 and HDAC1 associate with protein complexes that vary greatly in size; whereas, Lin28 primarily associates with smaller complexes, and Sall4 primarily associates with larger complexes. Additionally, we examined the domains of Sox2 necessary to mediate its association with its partner proteins Sall4, HDAC1 and HDAC2. We determined that Sox2 uses multiple and distinct domains to associate with its partner proteins. We also examined the domains of Sox2 necessary to mediate its self-association, and we determined that Sox2 self-association is mediated through multiple domains. Collectively, these studies provide novel insights into how Sox2 is able to associate with a wide array of nuclear proteins that control gene transcription

    Elevating the levels of Sox2 in embryonal carcinoma cells and embryonic stem cells inhibits the expression of Sox2:Oct-3/4 target genesā€ 

    Get PDF
    Recent studies have identified large sets of genes in embryonic stem and embryonal carcinoma cells that are associated with the transcription factors Sox2 and Oct-3/4. Other studies have shown that Sox2 and Oct-3/4 work together cooperatively to stimulate the transcription of their own genes as well as a network of genes required for embryogenesis. Moreover, small changes in the levels of Sox2:Oct-3/4 target genes alter the fate of stem cells. Although positive feedforward and feedback loops have been proposed to explain the activation of these genes, little is known about the mechanisms that prevent their overexpression. Here, we demonstrate that elevating Sox2 levels inhibits the endogenous expression of five Sox2:Oct-3/4 target genes. In addition, we show that Sox2 repression is dependent on the binding sites for Sox2 and Oct-3/4. We also demonstrate that inhibition is dependent on the C-terminus of Sox2, which contains its transactivation domain. Finally, our studies argue that overexpression of neither Oct-3/4 nor Nanog broadly inhibits Sox2:Oct-3/4 target genes. Collectively, these studies provide new insights into the diversity of mechanisms that control Sox2:Oct-3/4 target genes and argue that Sox2 functions as a molecular rheostat for the control of a key transcriptional regulatory network

    Identification of Novel Domains within Sox-2 and Sox-11 Involved in Autoinhibition of DNA Binding and Partnership Specificity

    Get PDF
    Sox transcription factors play key regulatory roles throughout development, binding DNA through a consensus (A/T)(A/T)CAA(A/T)G sequence. Although many different Sox proteins bind to this se-quence, it has been observed that gene regulatory elements are commonly responsive to only a small subset of the entire family, implying that regulatory mechanisms exist to permit selective DNA bind-ing and/or transactivation by Sox family members. To identify and explore the mechanisms modu-lating gene activation by Sox proteins further, we compared the function of Sox-2 and Sox-11. This led to the discovery that Sox proteins are regulated differentially at multiple levels, including trans-activation, protein partnerships with Pit-Oct-Unc (POU) transcription factors, and DNA binding au-toregulation. Specifically, we determined that Sox-11 activates transcription more strongly than Sox-2 and that the transactivation domain of Sox-11 is primarily responsible for this capability. Addition-ally, we demonstrate that the Sox-11 DNA binding domain is responsible for selective cooperation with the POU factor Brn-2. This requirement cannot be replaced by the DNA binding domain of Sox-2, indicating that the DNA binding domain of Sox proteins is critical for Sox-POU partnerships. In-terestingly, we have also determined that a conserved domain of Sox-11 has the novel capability of autoinhibiting its ability to bind DNA in vitro and to activate gene expression in vivo. Our findings suggest that the autoinhibitory domain can repress promiscuous binding of Sox-11 to DNA and plays an important role in regulating the recruitment of Sox-11 to specific genes

    Emerging roles of microRNAs in the control of embryonic stem cells and the generation of induced pluripotent stem cells

    Get PDF
    AbstractMicroRNAs (miRNAs) have emerged as critical regulators of gene expression. These small, non-coding RNAs are believed to regulate more than a third of all protein coding genes, and they have been implicated in the control of virtually all biological processes, including the biology of stem cells. The essential roles of miRNAs in the control of pluripotent stem cells were clearly established by the finding that embryonic stem (ES) cells lacking proteins required for miRNA biogenesis exhibit defects in proliferation and differentiation. Subsequently, the function of numerous miRNAs has been shown to control the fate of ES cells and to directly influence critical gene regulatory networks controlled by pluripotency factors Sox2, Oct4, and Nanog. Moreover, a growing list of tissue-specific miRNAs, which are silenced or not processed fully in ES cells, has been found to promote differentiation upon their expression and proper processing. The importance of miRNAs for ES cells is further indicated by the exciting discovery that specific miRNA mimics or miRNA inhibitors promote the reprogramming of somatic cells into induced pluripotent stem (iPS) cells. Although some progress has been made during the past two years in our understanding of the contribution of specific miRNAs during reprogramming, further progress is needed since it is highly likely that miRNAs play even wider roles in the generation of iPS cells than currently appreciated. This review examines recent developments related to the roles of miRNAs in the biology of pluripotent stem cells. In addition, we posit that more than a dozen additional miRNAs are excellent candidates for influencing the generation of iPS cells as well as for providing new insights into the process of reprogramming

    NF-Y Behaves as a Bifunctional Transcription Factor That Can Stimulate or Repress the FGF-4 Promoter in an Enhancer-Dependent Manner

    Get PDF
    NF-Y is a bifunctional transcription factor capable of activating or repressing transcription. NF-Y specifically recognizes CCAAT box motifs present in many eukaryotic promoters. The mechanisms involved in regulating its activity are poorly understood. Previous studies have shown that the FGF-4 promoter is regulated positively by its CCAAT box and NF-Y in embryonal carcinoma (EC) cells where the distal enhancer of the FGF-4 gene is active. Here, we demonstrate that the CCAAT box functions as a negative cis-regulatory element when cis-regulatory elements of the FGF-4 enhancer are disrupted, or after EC cells differentiate and the FGF-4 enhancer is inactivated. We also demonstrate that NF-Y mediates the repression of the CCAAT box and that NF-Y associates with the endogenous FGF-4 gene in both EC cells and EC-differentiated cells. Importantly, we also determined that the orientation and the position of the CCAAT box are critical for its role in regulating the FGF-4 promoter. Together, these studies demonstrate that the distal enhancer of the FGF-4 gene determines whether the CCAAT box of the FGF-4 promoter functions as a positive or a negative cis-regulatory element. In addition, these studies are consistent with NF-Y playing an architectural role in its regulation of the FGF-4 promoter

    Isolation, Characterization, and Differential Expression of the Murine Sox-2 Promoter

    Get PDF
    Sox proteins are expressed at many stages of development and in numerous tissues. The transcription factor Sox-2 is first expressed throughout the inner cell mass and subsequently becomes localized to the primitive ectoderm, developing central nervous system, and the lens. Sox-2 is also highly expressed in F9 embryonal carcinoma cells but becomes undetectable following differentiation of these cells. In this study, we have isolated, sequenced, and performed the first characterization of the Sox-2 promoter of any species. Approximately 2 kb of the Sox-2 5ā€²-flanking region has been sequenced and the primary transcription start site mapped by primer extension analysis. Additionally, two positive regulatory regions within the promoter region have been identified. We also show that expression of Sox-2 promoter/reporter gene constructs is reduced in differentiated EC cells as com-pared to their undifferentiated counterparts. Furthermore, we have identified a consensus inverted CCAAT box motif present in the Sox-2 promoter. Mutagenesis of this site significantly reduces the expression of Sox-2 promoter/reporter constructs. We also demonstrate that this CCAAT box motif can bind the trimeric transcription factor NF-Y

    Identification of the Transactivation Domain of the Transcription Factor Sox-2 and an Associated Co-activator

    Get PDF
    The importance of interactions between Sox and POU transcription factors in the regulation of gene expression is becoming increasingly apparent. Recently, many examples of the involvement of Sox-POU partnerships in transcription have been discovered, including a partnership between Sox-2 and Oct-3. Little is known about the mechanisms by which these factors modulate transcription. To better understand the molecular interactions involved, we mapped the location of the transactivation do-main of Sox-2. This was done in the context of its interaction with Oct-3, as well as its ability to transactivate as a fusion protein linked to the DNA-binding domain of Gal4. Both approaches demonstrated that Sox-2 contains a transactivation domain in its C-terminal half, containing a serine-rich region and the C terminus. We also determined that the viral oncoprotein E1a inhibits the ability of the Gal4/Sox-2 fusion protein to transactivate, as well as the transcriptional activation mediated by the combined action of Sox-2 and Oct-3. In contrast, a mutant form of E1a, unable to bind p300, lacks both of these effects. Importantly, we determined that p300 overcomes the inhibitory effects of E1a in both assays. Together, these findings suggest that Sox-2 mediates its effects, at least in part, through the co-activator p300
    • ā€¦
    corecore