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Abstract 
Sox proteins are expressed at many stages of development and in numerous tissues. The transcrip-
tion factor Sox-2 is first expressed throughout the inner cell mass and subsequently becomes local-
ized to the primitive ectoderm, developing central nervous system, and the lens. Sox-2 is also highly 
expressed in F9 embryonal carcinoma cells but becomes undetectable following differentiation of 
these cells. In this study, we have isolated, sequenced, and performed the first characterization of the 
Sox-2 promoter of any species. Approximately 2 kb of the Sox-2 5′-flanking region has been se-
quenced and the primary transcription start site mapped by primer extension analysis. Additionally, 
two positive regulatory regions within the promoter region have been identified. We also show that 
expression of Sox-2 promoter/reporter gene constructs is reduced in differentiated EC cells as com-
pared to their undifferentiated counterparts. Furthermore, we have identified a consensus inverted 
CCAAT box motif present in the Sox-2 promoter. Mutagenesis of this site significantly reduces the 
expression of Sox-2 promoter/reporter constructs. We also demonstrate that this CCAAT box motif 
can bind the trimeric transcription factor NF-Y. 
 
Keywords: embryonal carcinoma cells, FGF-4, NF-Y, SRY, UTF1 
 
Abbreviations: βGal, β-galactosidase; cat, chloramphenicol acetyl- transferase gene; CYP1A1, cyto-
chrome P4501A1 gene; DMEM, Dulbecco’s modified Eagle’s medium; dsODN, double-stranded 
oligo-nucleotide; EC, embryonal carcinoma; FBS, fetal bovine serum; FGF-4, fibroblast growth factor 
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4 gene; HMG, high mobility group; TβR-II, type II transforming growth factor-β receptor gene; UTF1, 
undifferentiated embryonic cell transcription factor 1 gene; UTR, untranslated region. 
 
1. Introduction 
 
Members of the Sox family were originally grouped together on the basis of their high 
homology to the HMG (high mobility group) domain of the testis-determining gene SRY. 
The HMG domain of Sox proteins is capable of binding in the minor groove of DNA in a 
sequence-specific manner (van de Wetering et al., 1993). In addition to the presence of a 
DNA binding domain, some Sox factors have been shown to contain modular transactiva-
tion domains (van de Wetering et al., 1993; Kuhlbrodt et al., 1998a, b; Nowling et al., 2000). 
These Sox factors are expressed at myriad stages during development and in numerous 
tissue types (Wegner, 1999) and have been found to act as transcriptional activators for a 
variety of genes that are developmentally regulated (van de Wetering et al., 1993; Yuan et 
al., 1995). Hence, the Sox protein family is likely to play pivotal roles in the control of de-
velopment. 

The transcription factor Sox-2 exhibits many of the hallmark features of the Sox family. 
Sox-2 expression is regulated both temporally and spatially. It is first expressed throughout 
the inner cell mass and subsequently becomes localized primarily to the primitive ecto-
derm and the developing nervous system (Collignon et al., 1996). It is also expressed in the 
lens later in development (Kamachi et al., 1995). Genes such as fibroblast growth factor 4 
(FGF-4) and undifferentiated embryonic cell transcription factor 1 (UTF1), which are ex-
pressed early in development, rely on enhancer elements that contain essential binding 
sites for Sox-2 (Yuan et al., 1995; Johnson et al., 1998; Nishimoto et al., 1999). In addition to 
acting as a transcriptional activator, Sox-2 is able to act as a repressor of transcription in 
some contexts, as observed in the regulation of the osteopontin gene (Botquin et al., 1998). 
Furthermore, Pevny et al. (1998) refer to unpublished reports that claim that Sox-2 homo-
zygous null embryos die soon after implantation, reinforcing the argument that Sox-2 is 
essential during embryogenesis. 

Despite the mounting evidence that Sox-2 is a key player in early developmental gene 
regulation, little is known about the transcriptional regulation of the Sox-2 gene itself. Em-
bryonal carcinoma (EC) cells provide an excellent cell model system in which to study the 
impact of cell differentiation on the expression of genes regulated during embryogenesis 
(Rizzino, 1989). Sox-2 is highly expressed in undifferentiated EC cells, but Sox-2 mRNA 
becomes undetectable upon differentiation of EC cells (Yuan et al., 1995; Johnson et al., 
1998), which suggests that Sox-2 is transcriptionally downregulated in this system. In this 
report, we address three main questions in an effort to elucidate the mechanisms by which 
Sox-2 is differentially regulated in EC cells. First, are positive regulatory elements present 
in the 5′-flanking region of the Sox-2 gene? To answer this question, we describe the cloning 
and sequencing of the Sox-2 promoter, the mapping of the primary transcription start site 
of the Sox-2 gene, and the initial characterization of the Sox-2 promoter using promoter/re-
porter gene constructs. We demonstrate that the region of the Sox-2 gene between −528 
and+238 contains regulatory elements capable of activating gene transcription. Second, are 
regulatory elements present in the promoter subject to differential regulation when EC 
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cells differentiate? We demonstrate that reporter constructs driven by regions of the Sox-2 
promoter are actively expressed when transfected into undifferentiated EC cells, but their 
expression is diminished significantly when the same constructs are transfected into EC-
differentiated cells. Finally, we have identified a putative CCAAT box motif present in the 
Sox-2 promoter. Mutagenesis of this CCAAT box in promoter/reporter gene constructs re-
duced the ability of the Sox-2 promoter to activate transcription compared to the wild-type 
promoter, indicating that the CCAAT box motif is important for Sox-2 expression. Further-
more, gel mobility supershift analysis revealed that the trimeric transcription factor NF-Y 
is capable of binding the Sox-2 CCAAT box motif. 
 
2. Materials and methods 
 
2.1. Isolation and subcloning of murine Sox-2 genomic DNA 
A bacteriophage P1-based mouse strain 129/Ola ES cell genomic library was screened by 
PCR using primers specific for the murine Sox-2 5′-untranslated region (UTR): 5′-TCA 
GAGTTGTCAAGGCAGAGA-3′ (sense) and 5′-CGCCGCGATTGTTGTGATTAGT-3′ (an-
tisense). These primers yield a 166 bp product from both genomic DNA and the Sox-2 P1 
genomic clone, which was obtained from Genome Systems (St. Louis, Missouri). Bacteria 
containing the P1 clone were grown, and we isolated DNA using a kb-100 (Magnum) kit 
(Genome Systems). Subcloning of the P1 clone was accomplished using standard tech-
niques. Briefly, the P1 clone was digested with various restriction enzymes, the resulting 
fragments purified and ligated into the multiple cloning site of pBluescript II KS+ and 
transformed into competent bacteria. Standard blue/white screening methods and PCR 
were used to identify bacterial colonies containing the desired insert. 

In the present study, two separate clones were selected for detailed characterization. 
They are referred to as Sox-2-5′Cl and Sox-2-3′Cl, and each contains one end of the Sox-2 
gene. The PCR primers mentioned above, which amplify the sequence from +17 to +183 
near the beginning of the 5′-UTR, were used to screen for inserts containing the 5′-flanking 
region; this identified Sox-2-5′Cl. A second set of primers was used to screen for inserts 
containing the remainder of the Sox-2 gene, including the 3′ flanking region of the gene. 
The primers 5′-CGCATGTATAACATGATGGAGACG-3′ (sense) and 5′-CATGGGCCTCT 
TGACGCGG-3′ (antisense), amplify the region of the Sox-2 gene between +404 and +547. 
In this manner, clone Sox-2-3′Cl was identified as containing the 3′ end of the Sox-2 gene. 
The ends of the cloned inserts were sequenced to determine orientation, and restriction 
enzyme sites were mapped. Sox-2-5′Cl was the product of a BglII digestion and includes 
almost 6 kb of genomic sequence, while Sox-2-3′Cl comprises an XhoI genomic fragment 
of about 10 kb (fig. 1A). These two clones overlap by 40 bp within the 5′-UTR of the Sox-2 
gene. 
 
2.2. DNA sequencing and analysis 
DNA sequencing was performed in the Molecular Biology Core Facility at the Eppley In-
stitute using an ABI 373 DNA Sequencer (Perkin-Elmer, Norwalk, Connecticut). The re-
gions flanking the Sox-2 transcript and the region containing a 35 bp discrepancy relative 
to published cDNA sequences, which are reported in this study, were sequenced on both 
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strands. Numbering of the Sox-2 promoter sequence has been determined by setting the 
5′-nucleotide of the Sox-2 cDNA sequence reported by Collignon et al. (1996) as +1. Align-
ment of sequences was accomplished using version 1.1 of the Sequence Navigator program 
(PE/ABI). The TFSEARCH Internet site (http://pdap1.trc.rwcp.or.jp/research/db/TFSEARCH. 
html), the BLAST network service at the National Center for Biotechnology (NCBI), and 
Genetics Computer Group (GCG) programs (Program Manual for the Wisconsin Package, 
Genetics Computer Group) were used in the analysis of the DNA sequence. 
 
2.3. Southern blot analysis 
Southern blot analysis was performed using 10 μg aliquots of genomic DNA (from R1 ES 
cells) digested with EcoRI, EcoRV, or HindIII and transferred onto a nylon membrane. The 
blot was probed with a 1 kb fragment from a Sox-2 cDNA clone, pBS-Sox-2 (Johnson et al., 
1998). The fragment was isolated using a HindIII site within the Sox-2 coding region and a 
downstream HindIII site within the multiple cloning site of the cloning vector, and then 
labeled with 32P-dCTP using the Rediprime II labeling kit (Amersham, Arlington Heights, 
Illinois). The most stringent wash employed 0.1 × SSPE buffer at 60°C (1 × SSPE consists of 
150 mM NaCl, 10 mM NaH2PO4 and 1 mM EDTA at pH 7.4). The blot was then exposed to 
a phosphoimager cassette and visualized using a PhosphorImager (Molecular Dynamics). 
 
2.4. Primer extension analysis 
The transcriptional start site utilized by the Sox-2 promoter was mapped using the anti-
sense primer Sox2PE (5′-CTGGCGGAGAATAGTTGGGGGGAAGCGGAG-3′), which is 
complementary to base pairs +239 to +269 of the Sox-2 cDNA sequence (Collignon et al., 
1996). This primer was end-labeled with [γ-32 P]ATP using T4 Polynucleotide Kinase (New 
England Biolabs, Beverly, Massachusetts). Approximately 105cpm of labeled primer was 
incubated with 3 μg poly(A)+ RNA isolated from undifferentiated F9 EC cells using a 
FastTrack 2.0 mRNA Isolation Kit (Invitrogen, San Diego, California) in a reaction brought 
to a total volume of 30 μl with hybridization buffer (40 mM PIPES pH 6.4, 1 mM EDTA, 
0.4 M NaCl, and 80% formamide). The reaction mix was denatured at 85°C for 10 min and 
allowed to hybridize overnight at 30°C. The RNA–primer duplexes were then ethanol pre-
cipitated and resuspended in 24 μl of a reverse transcription master mix (50 mM Tris–Cl 
pH 8.3, 75 mM KCl, 3 mM MgCl2, 10 mM dithiothreitol, 1 mM each dNTP, 40 units Rnasin 
(Promega, Madison, Wisconsin), and 50 μg/ml actinomycin D). Primer extension was ini-
tiated by adding 200 units Moloney murine leukemia virus reverse transcriptase (Promega, 
Madison, Wisconsin) and incubated at 42°C for 1 h. Thereafter, 2 μl of RNase ONE 
(Promega, Madison, Wisconsin) was added and the reaction incubated at 37°C for 30 min. 
The reaction was brought to 450 ml with dH2O and concentrated to approx. 5 μl using a 
MicroCon YM-10 Centrifugal Filter Device (Millipore, Bedford, Massachusetts). The exten-
sion reaction was electrophoresed on a 6% polyacrylamide–7 M urea gel, and visualized 
by Phosphorimager (Molecular Dynamics, Sunnyvale, California). The length of the cDNA 
extension product was determined by comparison to a radiolabeled pBR322-MspI digest 
(New England Biolabs, Beverly, Massachusetts) electrophoresed in the adjacent lane. 
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2.5. Cell culture and transient transfection 
F9 EC cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) (Life Tech-
nologies) supplemented with 10% fetal bovine serum (FBS) (Hyclone). F9 EC cells were 
seeded at 5 × 105 cells per 100 mm dish 24 h prior to transfection. Cells were transfected by 
the calcium phosphate precipitation method as described previously (Ma et al., 1992), in-
cubated with the precipitate for 14–16 h, and then refed with DMEM containing 10% FBS. 
Cells were harvested the following day and cell extracts were prepared. Chloramphenicol 
acetyl-transferase (CAT) and β-galactosidase (βGal) activities were determined as reported 
previously (Johnson et al., 1998). The total amount of transfected DNA was kept constant 
by addition of null vectors. To adjust for transfection efficiency, all transfections were nor-
malized with pCH110 (SV40 βGal) (Pharmacia, Piscataway, New Jersey). All transfections 
were performed in duplicate plates and repeated three times with representative transfec-
tions shown. Error bars shown represent 1 S.D. and were computer generated. Plasmid 
DNA was purified using Qiagen tip-500 columns. 

For transfection of EC-differentiated cells, F9 EC cells were seeded at 1 × 105 cells per 
100 mm dish in DMEM containing 10% FBS and 5 μM retinoic acid (RA). After 72 h, the 
cells were transfected as described above and refed 14–16 h post-transfection with DMEM 
containing 10% FBS and 5 μM RA. Cells were harvested 72 h later, cell extracts prepared, 
and CAT and βGal activities determined as described above. 
 
2.6. Promoter–reporter constructs and site-directed mutagenesis 
The following PCR primers were used in the design of the Sox-2 promoter/reporter gene 
constructs: 5′-GCTAAGCTTCTGCAGGACAAGCTTGGAAGAGGGGC-3′ (528-Sense), 5′-
GCCCTCGAGCTCTTCTCTGCCTTGACAACTCC-3′ (41-Antisense), and 5′-GCGCTCGA 
GCAATTGGGATGAAAAAACAGGC-3′ (238-Antisense). The underlined primer se-
quence indicates either the presence of a HindIII or XhoI site included for screening of pos-
itive clones. 

To generate Sox-2−528/+238, PCR was performed using Sox-2-5′Cl, which contains the 5′-
flanking region of the Sox-2 genomic sequence, as a template with the primer pair of 528-
Sense and 238-Antisense. The resulting product was cloned into the HindIII and XhoI sites 
of the cat expression vector pBLCAT7 (Rosfjord et al., 1994). Sox-2−528/+41 was generated in 
the same fashion using the primer pair of 528-Sense and 41-Antisense. To obtain Sox-2−72/+41, 
Sox-2−528/+41 was digested with the restriction enzymes HindIII and NaeI, resulting in a 5.3 
kb and 460 bp fragment. The 5.3 kb fragment, which lacks the region of the Sox-2 promoter 
between −528 and −72, was isolated by agarose gel electrophoresis, blunt-ended by treat-
ment with Klenow DNA Polymerase, and recircularized by ligation. The Sox-2−72/+238 con-
struct was generated in the same manner by digesting the Sox-2−528/+238 construct with 
HindIII/NaeI. The identity of the resulting four Sox-2 promoter constructs was confirmed 
by sequencing. 

Mutagenesis of the inverted CCAAT box sequence in the Sox-2−528/+238 construct was per-
formed using the QuikChange (Stratagene, La Jolla, California) method, using the follow-
ing PCR primer pair: CMut-Sense: 5′-AGCCGGCGCTCGCTGCAGCTGTATCGGAAACC 
CATTTAT TC-3′, CMut-Antisense: 5′-GAATAAATGGGTTTCCGATACAGCTGCAGCTA 
GCGCCG-3′. 
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These primers are complementary to each other as well to the region of the template 
surrounding the inverted CCAAT box; however, the underlined primer sequence contains 
a PvuII site and scrambles the CCAAT box while leaving the flanking sequence unchanged. 
To mutagenize the CCAAT box in the Sox-2−528/+238 construct, a PCR reaction was performed 
with the CMut-Sense and CMut-Antisense primer pair; however, only the CMut-Sense pri-
mer was present for the first five cycles in order to decrease the chance of primer-dimer 
formation. The PCR reaction was subjected to DpnI digestion to eliminate the parent vec-
tor, and transformed into DH5αF′ competent cells. A positive clone identified by PvuII 
digestion was verified by sequencing and designated Sox-2Mut−528/+238. 
 
2.7. Nuclear extract preparation and electrophoretic gel mobility shift assay 
Nuclear proteins were extracted from undifferentiated F9 EC cells using the method of 
Dignam et al. (1983) as modified in this laboratory (Scholtz et al., 1996). All extracts were 
dialyzed and stored (−80°C) in a buffer consisting of 20 mM HEPES (pH 7.9), 10% glycerol, 
100 mM KCl, 0.5 mM dithiothreitol, and protease and phosphatase inhibitors as described 
previously (Scholtz et al., 1996). 

Gel mobility shift analyses were based on the method of Fried and Crothers (1981) as 
modified by this laboratory (Kelly et al., 1995). Complementary oligonucleotides were an-
nealed for each probe or competitor, and the resulting double-stranded oligodeoxynucle-
otide (dsODN) probes were labeled with α[32P]dCTP by Klenow fill-in reaction of the 
single-stranded regions at the end of each ODN (lower-case bases). The dsODN probe in-
cludes the CCAAT box motif (bold) and flanking sequences from −77 to −37. The sequence 
of the wild-type Sox-2 CCAAT dsODN probe (sense strand) is: 5′-agcCGGCGCTCGCTG 
ATTGGCCGCCGGAAACCCATTTATTC-3′. The mutant CCAAT dsODN probe se-
quence is 5′-agcCGGCGCTCGCTGCAGCTGTATCGGAAACCCATTTATTC-3′. The mu-
tant sequence (underlined) is the same sequence as that used in the site-directed 
mutagenesis procedure performed on Sox-2−528/+238. The sequence of the wild-type FGF-4 
CCAAT dsODN probe (sense strand) is: 5′-agcttCTCCTCCCCCGGCGGTGATTGGCAGG 
CGG-3′. For gel mobility shift assays and competition analyses, 15 μg of nuclear extract 
protein prepared from F9 EC cells were incubated (20 min, room temperature) in a 
20 μl volume containing 50% dialysis buffer, 10 μg bovine serum albumin, 2 μg of 
p(dIdC)p(dIdC), and approx. 20 000 cpm of labeled dsODN in the absence or presence of 
competitor dsODN. In gel mobility supershift assays, reaction mixtures were incubated for 
1 h a t4°C with the indicated antibody prior to addition of the probe. All aspects of gel 
mobility shift assays were repeated and similar results were obtained. 
 
3. Results 
 
3.1. Isolation and structure of the murine Sox-2 gene 
While homologs of the Sox-2 gene have been isolated and the cDNA sequenced in multiple 
species, isolation and characterization of the 5′-flanking region of Sox-2 has not been re-
ported. Elucidation of the Sox-2 5′-flanking sequence is critical for the study of Sox-2 tran-
scriptional regulation, as this region contains the promoter and other regulatory elements. 
To obtain a genomic clone containing the 5′-flanking region of the Sox-2 gene, PCR primers 
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were designed that amplify the region of the 5′-UTR from +17 to +183 based on the pub-
lished cDNA sequence (Collignon et al., 1996). These primers were used to screen a bacte-
riophage P1-based genomic library from mouse strain 129 as described in section 2.1. The 
P1 clone was digested with various restriction enzymes and the resulting fragments cloned 
into pBluescript II KS+. PCR screening of the subclones indicated the presence of the Sox-
2 5′- and 3′-flanking regions within a BglII and a XhoI fragment, respectively (fig. 1A), 
which were then designated Sox-2-5′Cl and Sox-2-3′Cl. Using deletional subcloning and 
primer walking, the 5′-flanking region of the Sox-2 gene was sequenced on both strands 
from −1907 to −1 bp (fig. 1B, GenBank Acc. AF118260). Using similar methods, 690 bp of 
the 3′-flanking region of Sox-2 was also sequenced (data not shown, GenBank Acc. 
AF118262) and found to exhibit greater than 80% identity to the 3′-flanking region of the 
sheep Sox-2 gene (Payen et al., 1997). 

While Collignon et al. (1996) reported that the coding region of the Sox-2 gene does not 
contain any introns, it was unclear as to whether the untranslated regions were similarly 
free of introns. Using sequencing primers designed from the published cDNA sequence, 
Sox-2-5′Cl and Sox-2-3′Cl were screened for the presence of introns. The genomic sequence 
corresponding to the 5′-UTR of Sox-2 was identical to the 5′-UTR sequence previously pub-
lished, indicating that introns are absent from the 5′-UTR of Sox-2. However, a single 35 bp 
sequence was identified in the 3′-UTR that is not present in the cDNA sequence (Yuan et 
al., 1995; Collignon et al., 1996; Johnson et al., 1998). The 35 bp segment (data not shown, 
GenBank Acc. AF118261) was found to be 80% homologous to the corresponding region 
of the sheep sequence (Payen et al., 1997). This region could be an intron, although its ends 
do not conform to the classical splice acceptor or donor consensus sequences. It is conceiv-
able that this 35 bp sequence is the result of a sequencing error of the Sox-2 cDNA, due to 
the long run of adenine residues flanking both ends of the 35 bp sequence. However, it is 
unlikely that the 35 bp segment is an allelic variation. The sequence reported by Yuan et 
al. (1995) was obtained from Sox- 2 cDNA derived from F9 EC cells. This cell line and the 
genomic clone sequenced in the present study were both derived from mouse strain 129. 
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Figure 1. (A) Restriction enzyme mapping of the murine Sox-2 gene. Restriction enzyme 
abbreviations are: G = BglII, V = EcoRV, H = HindIII, X = XhoI, B = BamHI, E = EcoRI. Loca-
tion of 5′- and 3′-flanking regions sequenced in this report are indicated as 5′seq and 3′seq, 
respectively. Location of Sox-2 5′-UTR (untranslated region), coding region, and 3′-UTR 
are noted. Location of the unpublished 35 bp region in 3′-UTR is also noted. Genomic 
clones Sox-2-5′Cl and Sox-2-3′Cl were isolated by restriction digest of the Sox-2 genomic 
fragment with BglII and XhoI, respectively, and cloned into pBluescript II KS+. These two 
genomic clones overlap each other by 40 bp. (B) Sequence of murine Sox-2 5′-flanking 
regions from −1907 to −1 (GenBank Acc. No. AF118260). The sequence numbering is based 
upon defining the 5′ bp of the cDNA sequence reported by Collignon et al. (1996) as the 
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+1 coordinate. Thus, the first base in the sequence reported by Collignon et al. (+1) imme-
diately follows base −1 in our sequence. Putative transcription factor binding sites (under-
lined) include: an inverted CCAAT box/NF-Y motif centered at −60, two Ets sites centered 
at −50 and −460, and an Sp1 site centered at −125. Additionally, there is a putative POU 
site centered at −110 and Sox/SRY site at −475. 

 
We also performed Southern blot analysis of the murine Sox-2 gene using genomic DNA 

from murine ES cells. The DNA was digested with either EcoRI, EcoRV, or HindIII, trans-
ferred onto a nylon membrane, and probed with a 1 kb fragment from a Sox-2 cDNA clone. 
In all cases a single band was detected (fig. 2). The fragment bands were 4.5 kb following 
EcoRV digestion and 8 kb following HindIII digestion. These results correspond to the sizes 
predicted from sequence data and restriction enzyme mapping of Sox-2-5′Cl and Sox-2-
3′Cl (fig. 1A). A band >13 kb was detected following EcoRI digestion, which also was de-
tected with a probe located 5 kb downstream from the Sox-2 transcript (data not shown). 
These findings argue that the murine genome does not contain a Sox-2 pseudogene. 
 

 
 

Figure 2. Southern blot analysis of the murine Sox-2 gene. The Southern blot analysis was 
performed using 10 μg of genomic DNA isolated from R1 ES cells digested with EcoRI, 
EcoRV, or HindIII and transferred onto a nylon membrane. The blot was probed with a 
radiolabeled HindIII fragment from a Sox-2 cDNA clone as described in section 2.3. 

 
3.2. Mapping the transcriptional start site of the Sox-2 gene 
The cDNA sequence of the Sox-2 gene reported by Collignon et al. (1996) contains a 406 bp 
5′-UTR. However, it has yet to be demonstrated as to whether the 5′-end of this sequence 
represents the primary start site for Sox-2 transcription or if the gene utilizes multiple sites 
of transcription initiation. To determine the location of the primary transcription start site 
of the Sox-2 gene, primer extension analysis was performed as described in section 2.4 us-
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ing poly(A)+ RNA isolated from F9 EC cells. Using the primer Sox2PE, a single major prod-
uct was detected that migrates with a length of 260–280 bases (fig. 3), which corresponds 
well with the length of 269 bases predicted from the cDNA sequence reported by Collignon 
et al. (1996). While these data do not discount the possibility that there may be other minor 
transcription start sites utilized by the Sox-2 promoter, they do indicate that the Sox-2 gene 
initiates transcription at a single major start site approx. 406 bp upstream of the Sox-2 pro-
tein coding region. 
 

 
 

Figure 3. Primer extension analysis to identify the Sox-2 transcription start site. Three mi-
crograms of poly(A)+ RNA isolated from F9 EC cells was hybridized to the radiolabeled 
antisense primer Sox2PE, and a primer extension reaction was performed using Moloney 
murine leukemia virus reverse transcriptase as described in section 2.4. The resulting 
cDNA product was electrophoresed on a 6% polyacrylamide–7 M urea gel adjacent to a 
radiolabeled pBR322-MspI digest and visualized using a PhosphorImager (Molecular Dy-
namics, Sunnyvale, California). This experiment was repeated and similar results were 
obtained. 

 
3.3. Characterization of the Sox-2 promoter 
To begin the characterization of the Sox-2 promoter, a panel of promoter/reporter gene 
constructs was generated that contain overlapping segments of the 5′-flanking region of 
the Sox-2 gene placed upstream of a cat reporter gene as described in Section 2.6 (fig. 4). To 
search for positive regulatory elements present within and near the Sox-2 promoter, these 
constructs were transiently transfected into F9 EC cells, which express the endogenous Sox-
2 gene. The relative cat expression driven by each of the constructs was normalized using 
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a vector containing the βGal gene as an internal standard to adjust for differences in trans-
fection efficiency. The expression of Sox-2−72/+41, the smallest construct, was set arbitrarily 
to 1 for the purpose of comparison. The region of Sox-2 between −528 and +238 clearly 
contains positive cis-regulatory elements. The expression of Sox-2−528/+238 is approx. 14-fold 
above that of the basal construct Sox-2−72/+41 (fig. 4). In addition, Sox-2−528/+41 and Sox-2−72/+238 
both contain positive regulatory elements, as they are able to activate the cat reporter gene 
3-fold and 7-fold, respectively, above that of Sox-2−72/+41. These results argue that the Sox-2 
promoter region contains at least two positive cis-regulatory elements, present between 
the regions of (−528 to −72) and (+41 to +238), which are able to elevate expression of the 
reporter gene independent of one another (fig. 4). 
 

 
 

Figure 4. Murine Sox-2 promoter activity in F9 EC cells. Duplicate plates of F9 EC cells 
were transfected with the indicated Sox-2 promoter/reporter gene construct (left) and an-
alyzed for promoter activity as a function of CAT activity (right). Any difference in the 
relative CAT activity between the duplicate plates assayed is shown as an error bar, which 
represents 1 S.D. Units of relative CAT activity of the Sox-2−72/+41 construct have been as-
signed the value of 1. In the experiment shown, CAT activity of Sox-2−72/+41 was 1200 cpm. 
The cells were also transfected with SV40-βGal to adjust for any differences in transfection 
efficiency. This experiment was performed three times and similar results were obtained 
in each experiment. 

 
3.4. Effect of differentiation on the Sox-2 promoter constructs 
In the presence of retinoic acid, F9 EC cells differentiate into cells that exhibit the properties 
of parietal extra-embryonic endoderm (Strickland and Mahdavi, 1978). A comparison of 
mRNA expression between parental and differentiated F9 EC cells revealed that expres-
sion of the Sox-2 gene becomes undetectable following differentiation (Yuan et al., 1995; 
Johnson et al., 1998). To determine whether the Sox-2 promoter/reporter gene constructs 
are differentially regulated, the Sox-2 promoter/reporter constructs were transfected into 
F9 EC-differentiated cells. In the EC-differentiated cells, the expression of the cat reporter 
when driven by Sox-2−528/+238 is approx. 3-fold greater than the basal Sox-2−72/+41 construct 
(fig. 5). This is in contrast to the activity of the same promoter region in the parental cells, 
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where a 14-fold induction is observed (fig. 4). Down-regulation of the two smaller con-
structs was also observed when compared to their expression in the parental cells, although 
not as dramatic as the decrease observed with Sox-2−528/+238. These results indicate that the 
Sox-2 promoter/reporter constructs contain cis-regulatory elements that are differentially 
utilized in F9 EC cells and their differentiated counterparts, and for the most part mimic 
the expression pattern of the endogenous Sox-2 gene (Yuan et al., 1995; Johnson et al., 1998). 
It is worth noting that the Sox-2−528/+238 promoter/reporter gene construct exhibited some 
reporter activity in the F9 EC-differentiated cells (fig. 5). However, Sox-2 transcripts are not 
detected by Northern blot analysis of RNA prepared from differentiated EC cells (Yuan et 
al., 1995; Johnson et al., 1998). Hence, reporter activity in the differentiated cells is unlikely 
to be due to residual undifferentiated EC cells. Currently, the reason for this common ob-
servation is unclear, but similar observations have been made for the FGF-4, TβR-II, and 
TGF-β2 genes (Ma et al., 1992; Kelly et al., 1995, 1998), which are differentially expressed 
by F9 EC cells and their differentiated counterparts. 
 

 
 

Figure 5. Murine Sox-2 promoter activity in F9 differentiated EC cells. Duplicate plates of 
F9 EC cells were induced to differentiate in 5 μM retinoic acid. After 72 h, the differenti-
ated cells were transfected with the indicated Sox-2 promoter/reporter gene construct 
(left) and analyzed for promoter activity as a function of CAT activity (right). Any differ-
ence in the relative CAT activity between the duplicate plates assayed is shown as an error 
bar, which represents 1 S.D. Units of relative CAT activity of the Sox-2−72/+41 construct have 
been assigned the value of 1. In the experiment shown, CAT activity of Sox-2−72/+41 was 
1183 cpm. The cells were also transfected with SV40-βGal to adjust for any differences in 
transfection efficiency. This experiment was performed three times and similar results 
were obtained in each experiment. 

 
3.5. Role of a consensus CCAAT box motif present in the Sox-2 promoter 
To identify putative regulatory factors that may act on the Sox-2 promoter, we analyzed 
the sequence between −528 and +238 using a database containing known transcription fac-
tor binding sites (TFSEARCH). Although this analysis revealed a number of potential tran-
scription factor binding sites (fig. 1B), no identifiable TATA box was found. However, as 
in the case of many promoters that lack a TATA box, an inverted CCAAT box is present. 



W I E B E  E T  A L . ,  G E N E  2 4 6  (2 0 0 0 )  

13 

This CCAAT box motif is located at −60, which has been found to be the average distance 
from the start site for functional CCAAT boxes in promoters that lack a TATA box (Man-
tovani, 1998). To examine whether the putative CCAAT box motif was functional, site-
directed mutagenesis was used to scramble the sequence of the putative CCAAT box in 
Sox-2−528/+238. The ability of the mutant and its wild-type counterpart to drive expression of 
the cat reporter gene was compared in undifferentiated F9 EC cells. Mutagenesis of the 
CCAAT box in Sox-2−528/+238 reduced expression of the reporter gene approx. 3-fold when 
compared to the wild-type expression (fig. 6). This result argues strongly that the CCAAT 
box motif present in the Sox-2 promoter plays a functional role in the transcription of this 
gene. 
 

 
 

Figure 6. Role of the CCAAT box motif in the expression of the Sox-2 promoter in EC cells. 
Duplicate plates of F9 EC cells were transfected with either the wild-type or mutagenized 
Sox-2 promoter/reporter gene construct (left) and analyzed for promoter activity as a 
function of CAT activity (right). Any difference in the relative CAT activity between the 
duplicate plates assayed is shown as an error bar, which represents 1 S.D. Units of relative 
CAT activity of the Sox-2−72/+41 construct have been assigned the value of 1. In the experi-
ment shown, CAT activity of Sox-2−72/+41 was 1185 cpm. The cells were also transfected 
with SV40-βGal to adjust for any differences in transfection efficiency. This experiment 
was performed three times and similar results were obtained in each experiment. 

 
3.6. The CCAAT box present in the Sox-2 promoter binds the transcription factor NF-Y 
CCAAT box motifs within promoters have been shown to bind a number of different tran-
scription factors, including NF-Y, CDP, and CTF/NF-I (Mantovani, 1998). To help identify 
the transcription factor that binds this site, we analyzed the sequence flanking the CCAAT 
box in the Sox-2 promoter and found that it was almost identical to a 10 bp sequence found 
in the promoters of the FGF-4, type II transforming growth factor-β receptor (TβR-II ), and 
cytochrome P4501A1 (CYP1A1) gene. These genes all contain the sequence (5′-TGATTGGC 
AG-3′), which differs by only one base pair (underlined) with the Sox-2 CCAAT box (5′-
TGATTGGCCG-3′). Previous gel mobility shift assays demonstrated that the CCAAT box 
motif from each of these three genes can form two DNA/protein complexes, one of which 
contains NF-Y (Boucher et al., 1993, 1995; Lamb et al., 1997; Kelly et al., 1998). To determine 
whether NF-Y binds the Sox-2 CCAAT box motif, we performed gel mobility shift analysis 
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using a dsODN probe containing the CCAAT box sequence of the Sox-2 promoter. This 
labeled DNA fragment was incubated with nuclear extract prepared from F9 EC cells and 
subjected to electrophoresis in a high ionic strength non-denaturing polyacrylamide gel. 
We determined that a single distinct DNA/protein complex is formed (fig. 7), which could 
be competed with 100-fold excess of unlabeled wild-type competitor (data not shown). 
However, the complex was not competed by 100-fold excess of a mutant competitor, which 
contained a scrambled CCAAT box sequence (data not shown). Additionally, the Sox-2 
CCAAT box motif did not form a faster migrating complex, which formed with the probe 
contained the FGF-4 CCAAT box motif (fig. 7). To identify the factor in the DNA/protein 
complex, the labeled wild-type Sox-2 CCAAT probe was incubated with F9 EC nuclear 
extract in the presence or absence of antibody specific for the A subunit of NF-Y or a control 
IgG antibody. Addition of the NF-YA antibody resulted in a supershift of the DNA/protein 
complex, whereas the control IgG antibody did not affect the complex (fig. 7). This indi-
cates that the functional CCAAT box motif present in the Sox-2 promoter can bind NF-Y 
in vitro. 
 

 
 

Figure 7. NF-Y binds to the CCAAT box motif present in the Sox-2 promoter. Prior to 
incubation with 32P-labeled Sox-2 or FGF-4 dsODN, nuclear extracts prepared from F9 EC 
cells were incubated in the absence or presence of an NF-YA antibody or a nonspecific 
IgG antibody as indicated. Binding reactions to the labeled dsODN were performed as 
described in section 2.7. This experiment was repeated and similar results were obtained. 
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4. Discussion 
 
The present study reports the isolation and characterization of the Sox-2 promoter. We 
have mapped the major transcriptional start site, using primer extension analysis, to ap-
prox. 406 bp upstream of the translation start site, which corresponds to the 5′ base of the 
Collignon et al. (1996) Sox-2 cDNA sequence and the −1 coordinate reported in this study 
(fig. 1B). Nearly 2 kb of the 5′-flanking region upstream of this transcription start site was 
sequenced. Utilizing this sequence, four overlapping segments of the 5′-flanking region 
were used to generate a panel of Sox-2 promoter/reporter gene constructs. This resulted in 
the identification of two positive regulatory regions present within the Sox-2 promoter re-
gion between −528 and + 238. Furthermore, we determined that the Sox-2 promoter/re-
porter gene constructs are expressed at significantly lower levels in differentiated EC cells 
when compared to their undifferentiated counterparts. This suggests that the regulation of 
the endogenous Sox-2 gene observed during the differentiation of EC cells is likely to be 
due, at least in part, to differential utilization of cis-regulatory elements in close proximity 
to the Sox-2 promoter. 

To further define the cis-regulatory elements of this gene, the TFSEARCH database was 
used to examine the 5′-flanking sequence of the Sox-2 gene for possible transcription factor 
binding sites. This analysis identified a putative CCAAT box motif centered at −60. Muta-
genesis of this CCAAT box motif demonstrated that it plays a functional role in the regu-
lation of the Sox-2 promoter and gel mobility shift analysis demonstrated that the CCAAT 
box motif can bind the transcription factor NF-Y in vitro. NF-Y (also known as CBF) is a 
ubiquitously expressed, trimeric transcription factor that binds to CCAAT motifs in a num-
ber of eukaryotic promoters that are expressed in a tissue-specific manner (Mantovani, 
1998). NF-Y has also been proposed to play a pivotal role in bridging upstream factors with 
the basal transcription machinery in promoters similar to that of Sox-2, which contain no 
identifiable TATA box. Interestingly, the FGF-4, TβR-II, and CYP1A1 genes each contain 
identical CCAAT box-like sequence motifs in each of their respective promoters (5′-
TGATTGGCAG-3′). Unlike the Sox-2 CCAAT box motif, gel mobility shift analysis of the 
FGF-4, TβR-II, and CYP1A1 CCAAT box motifs revealed formation of two distinct 
DNA/protein complexes, one of which contains NF-Y (Boucher et al., 1993, 1995; Lamb et 
al., 1997; Kelly et al., 1998). Both complexes are specific for the CCAAT box-like motif, as 
an unlabeled FGF-4, TβR-II, or CYP1A1 mutant CCAAT box competitor, in which only the 
CCAAT box has been scrambled, does not compete for either complex (Kelly and Rizzino, 
unpublished data). In this regard, it should be noted that the flanking sequences of these 
probes appear to play no significant role in the formation of the DNA/protein complexes, 
as the flanking sequence in each of these probes varies considerably. Interestingly, the tran-
scription factor(s) in the faster migrating complex, which has yet to be identified, does not 
bind to the Sox-2 CCAAT box in vitro (fig. 7). This observation reveals that the unknown 
factor exhibits high sequence specificity, as it binds to the FGF-4, TβR-II, and CYP1A1 
CCAAT box motif (5′-TGATTGGCAG-3′), but not the Sox-2 promoter CCAAT box motif 
(5′-TGATTGGCCG-3′) which differ by only 1 bp (underlined) within the CCAAT box mo-
tif. Studies performed by Piechocki et al. (1998) have also demonstrated that alteration of 
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this base pair within the CYP1A1 CCAAT box decreases binding of a faster migrating com-
plex, lending further support to the critical affect of the 1 bp difference noted above. 

In addition to the CCAAT box motif, a number of potential regulatory elements were 
identified by the use of the TFSEARCH database, including: Sp1, Sox/SRY, POU, and Ets 
family members. A sequence centered at −50 (GCCGGAAACC) next to the CCAAT box/ 
NF-Y site is similar to binding sites reported for various Ets family members, as is a se-
quence centered at −460 (inverted, GCCGGAGGTG) (Wasylyk et al., 1993). The latter pu-
tative Ets site is close to a Sox/SRY/HMG motif centered at −475, which has a sequence 
(AACAATG) that may bind SRY or several other members of the Sox family (Wegner, 
1999). A sequence centered at −125 has a strong fit to the Sp1 consensus sequence (Bucher, 
1990). The neighboring sequence centered at −110 (ATGCAAAA) is similar to the POU site 
sequence ATGCAAAT, which can bind octamer binding proteins (Okamoto et al., 1990). 
Within the 5′-UTR of the Sox-2 gene, an additional putative Sox/SRY/HMG site centered at 
+174 (AACAAT) may also bind members of the Sox family (Wegner, 1999). Furthermore, 
a nonconsensus E2F site (TTTGGAGC) centered at +134 and nonconsensus SRY site 
(AACTAA) centered at +163 were also identified in the 5′-UTR by the TFSearch database. 
Further studies will be needed to determine whether any of these potential transcription 
factor binding motifs influence the expression of the Sox-2 gene. 

Many early developmental genes are differentially regulated at the level of transcrip-
tion. The expression pattern of Sox-2 in EC cells also appears to follow this trend, since Sox-
2 mRNA levels become undetectable following EC cell differentiation (Yuan et al., 1995; 
Johnson et al., 1998). The expression pattern exhibited by the Sox-2 promoter constructs in 
the EC-differentiated cells indicates that this portion of the Sox-2 gene contains differen-
tially utilized cis-regulatory elements. The putative HMG, POU, and Ets bindings sites pre-
sent in the Sox-2 5′-flanking region may bind transcription factors that are known to be 
differentially regulated in EC cells (Xin et al., 1992; Yuan et al., 1995). Hence, one or more 
of these potential candidate transcription factor binding sites could contribute to the dif-
ferential expression of Sox-2 in EC cells and EC-derived differentiated cells. Additionally, 
it should be noted that none of the Sox-2 promoter/reporter gene constructs was com-
pletely silent in the differentiated EC cells. This hints that perhaps other distal regulatory 
elements, which are not present in our promoter/reporter gene constructs, may also silence 
the endogenous Sox-2 gene upon differentiation of EC cells. 

Methylation of DNA rich in guanine and cytosine content represents another mecha-
nism by which gene expression may be influenced (Razin, 1998). Methylated CpG islands 
are capable of binding multicomponent repressor complexes, which are capable of main-
taining histones in a deacetylated state, thus silencing a gene by retaining the local chro-
matin structure in a tightly closed conformation (Razin, 1998). The region of the Sox-2 gene 
from −1907 to −1200 bp upstream of the transcriptional start site and the 3′-UTR contain 
only 3% CpG content. In contrast, a CpG island covers the first 1200 bp upstream of the 
transcription start site (7% CpG) as well as Sox-2 coding sequence and 5′-UTR (9% CpG 
each). The greatest CpG content is centered over the translational initiation codon (15% 
CpG in 300 bp) and immediately upstream of the transcriptional start site (11% CpG in 300 
bp). 
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In conclusion, we describe the sequencing and initial characterization of the promoter 
of the murine Sox-2 gene. Given the critical role of Sox-2 during early development (Yuan 
et al., 1995; Botquin et al., 1998; Johnson et al., 1998; Nishimoto et al., 1999), the regulation 
of this gene warrants further analysis. This study provides a foundation for future efforts 
to elucidate the mechanisms by which the Sox-2 gene is regulated both spatially and tem-
porally. 
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