11 research outputs found

    PropriĂ©tĂ©s mĂ©caniques et fonctionnelles des cellules Ă©pithĂ©liales respiratoires exposĂ©es Ă  une toxine bactĂ©rienne : l’adĂ©nylate cyclase

    Get PDF
    The increase in respiratory infections involving virulent factors of bacterial origin has become a major public health issue. A better knowledge of the cell respiratory response in the course of the initial cell invasion by bacterial toxins is important from the pathophysiological and therapeutical point of views.The purpose of this work is to decipher the cellular and molecular mechanisms involved in the exposition of respiratory epithelial cells to the adenylate cyclase toxin (CyaA) produced by Bordetella pertussis which is the whooping cough agent. We have chosen this toxin for its multiple capacities of penetrating a wide range of eukaryotic cells. Indeed, this toxin enables direct translocation of its catalytic domain across the plasma membrane of target cells using the endogen calmoduline to increase the cAMP rate at supraphysiological levels. However, the effects of these changes on mechano-chemical signaling (mechanotransduction) pathways remain largely unknown while it affects cellular functions and cell integrity. So, we perform an evaluation of cellular functions as well as mechanical and adhesion properties of respiratory epithelial cells exposed to CyaA toxin in order to detect some critical modifications in the mechanotransduction processes.In a preliminary study aiming at defining physiopathological concentrations of CyaA toxin used in our experiments, we determined the cell viability degree for 3 concentrations of CyaA toxin (0.5; 5 and 10 nM). We found that the smallest concentration (0.5 nM) did not affect cell viability whereas inducing supraphysiological cAMP levels in less than one hour.Then, we assessed the effects of CyaA toxin on cell migration and repair phenomenon, on ciliary beating and on cell permeability of epithelial cells representative of the different levels of the respiratory tract. The toxin induces a decrease in cell migration and repair, an increase in cell permeability suggesting a weakening of lateral cell-cell junctions.Immunostaining was performed on intracellular and interfacial structures of alveolar epithelial cells exposed to the 3 concentrations of CyaA toxin. Results show that CyaA toxin is able to induce cytoskeleton remodeling and a decrease in the number of focal adhesions. Finally, a refined analysis of mechanical properties and adhesion parameters was performed on the same cells by 2 techniques of micro/nanomanipulation modified to permit at the same time, an evaluation of cell adhesion and cell rigidity (Atomic Force Microscopy with indentation and force spectroscopy to characterize the number of bond during adhesion reinforcement and multiscale Magnetic Twisting Cytometry). To evaluate the role of cAMP on cellular and molecular changes, we tested the enzymatically inactive form of CyaA toxin called CyaAE5 which could not permit to increase the intracellular cAMP rate.The AFM experiments have revealed that the main effect of CyaA toxin is to decrease the number of associated integrin-ligand bounds (meaning an alteration of clustering) while, at the smallest concentration of CyaA toxin, we observe an increase in cell rigidity with an individual bound reinforcement, a result consistent with MTC results. Nevertheless, CyaE5 does not exhibit such cellular effects. On the whole, these results suggest that CyaA toxin affects the mechanotransduction pathways of cells exposed to the toxin, a result which is in agreement with the expected effects of cAMP increase (notably cytoskeleton remodeling, lateral junction alteration and inhibition of Rac1 expression) what brings a new vision of the cytotoxicity induced by the adenylate cyclase toxin.La recrudescence des infections respiratoires impliquant des facteurs virulents d’origine bactĂ©rienne est devenue un problĂšme majeur de santĂ© publique. Mieux caractĂ©riser la rĂ©ponse des cellules respiratoires dans la phase initiale d’exposition Ă  des toxines bactĂ©riennes est important sur les plans physiopathologiques et thĂ©rapeutiques. Le but de ce travail est de dĂ©crypter les mĂ©canismes cellulaires et molĂ©culaires impliquĂ©s lors de l’exposition des cellules Ă©pithĂ©liales respiratoires Ă  l’adĂ©nylate cyclase (CyaA), une toxine produite par Bordetella pertussis, l’agent responsable de la coqueluche. CyaA a Ă©tĂ© choisie car elle dispose de multiples moyens qui lui permettent d’envahir un grand nombre de cellules eucaryotes. Elle est notamment capable de transloquer son domaine catalytique directement dans la cellule cible puis d’utiliser la calmoduline endogĂšne pour augmenter le taux d’AMPc Ă  des niveaux supraphysiologiques. Cependant l’effet de ces changements sur la signalisation mĂ©cano-chimique (mĂ©canotransduction) a Ă©tĂ© trĂšs peu dĂ©crit alors qu’elle affecte les fonctions et l’intĂ©gritĂ© cellulaires. Nous proposons donc d’évaluer les fonctions cellulaires et les propriĂ©tĂ©s mĂ©caniques et d’adhĂ©sion des cellules Ă©pithĂ©liales respiratoires exposĂ©es Ă  CyaA dans le but de dĂ©celer des modifications fondamentales dans les processus de mĂ©canotransduction.Nous avons tout d’abord menĂ© une Ă©tude prĂ©liminaire visant Ă  dĂ©finir les concentrations physiopathologiques de CyaA utilisĂ©es dans nos expĂ©riences. Nous avons ainsi dĂ©terminĂ© le degrĂ© de viabilitĂ© cellulaire en fonction de 3 concentrations de CyaA (0.5 ; 5 ; 10 nM), ce qui a montrĂ© que la concentration 0.5 nM n’affectait pas la viabilitĂ© cellulaire tout en induisant des niveaux supraphysiologiques d’AMPc en moins d’une heure.Nous avons ensuite cherchĂ© Ă  Ă©valuer les effets de CyaA sur la migration et la rĂ©paration cellulaires, le battement ciliaire et la permĂ©abilitĂ© cellulaire de cellules Ă©pithĂ©liales reprĂ©sentatives des diffĂ©rents niveaux de l’arbre aĂ©rien. CyaA induit une diminution de la migration et de la rĂ©paration cellulaires, ainsi qu’une augmentation de la permĂ©abilitĂ© cellulaire traduisant un affaiblissement des jonctions latĂ©rales.Une Ă©tude en immunoflorescence a ensuite Ă©tĂ© conduite sur les structures intracellulaires et interfaciales des cellules Ă©pithĂ©liales alvĂ©olaires exposĂ©es aux 3 concentrations de CyaA. Cette Ă©tude a montrĂ© que CyaA est capable d’induire un remodelage du cytosquelette d’actine ainsi qu’une diminution du nombre des adhĂ©rences focales. Enfin, une analyse complĂšte des propriĂ©tĂ©s mĂ©caniques et des paramĂštres d’adhĂ©sion a Ă©tĂ© conduite sur les mĂȘmes cellules au moyen de 2 techniques de micro/nanomanipulation revisitĂ©es pour permettre Ă  la fois l’évaluation des liens multiples et de la rigiditĂ© cellulaire (Microscopie Ă  Force Atomique (AFM) avec indentation et MagnĂ©tocytomĂ©trie (MTC)). Pour Ă©valuer le rĂŽle de l’AMPc sur les changements observĂ©s, les cellules Ă©pithĂ©liales respiratoires ont Ă©tĂ© testĂ©es avec la forme active de CyaA et la forme enzymatiquement inactive de la toxine : CyaAE5, qui ne permet pas de synthĂ©tiser l’AMPc.Les expĂ©riences AFM ont rĂ©vĂ©lĂ© que le principal effet de CyaA est de diminuer le nombre de liens intĂ©grine-ligand associĂ©s (une altĂ©ration du clustering) alors qu’à la plus faible concentration de CyaA, nous observons une augmentation de la rigiditĂ© cellulaire, accompagnĂ©e d’un renforcement des liens individuels, Ă©volutions confirmĂ©es par les rĂ©sultats MTC. CyaAE5 ne parvient pas Ă  produire ces mĂȘmes effets.L’ensemble des rĂ©sultats suggĂšre que CyaA affecte de façon prĂ©coce la mĂ©canotransduction des cellules exposĂ©es et ceci en cohĂ©rence avec les effets attendus de l’augmentation d’AMPc (remodelage du CSQ, altĂ©ration des jonctions latĂ©rales, inhibition de l’expression de Rac1), ce qui apporte une nouvelle vision de la cytotoxicitĂ© induite par l’adĂ©nylate cyclase

    Mechanical and functionnal properties of respiratory epithelial cells exposed to a bacterial toxine : the adenylate cyclase

    No full text
    La recrudescence des infections respiratoires impliquant des facteurs virulents d’origine bactĂ©rienne est devenue un problĂšme majeur de santĂ© publique. Mieux caractĂ©riser la rĂ©ponse des cellules respiratoires dans la phase initiale d’exposition Ă  des toxines bactĂ©riennes est important sur les plans physiopathologiques et thĂ©rapeutiques. Le but de ce travail est de dĂ©crypter les mĂ©canismes cellulaires et molĂ©culaires impliquĂ©s lors de l’exposition des cellules Ă©pithĂ©liales respiratoires Ă  l’adĂ©nylate cyclase (CyaA), une toxine produite par Bordetella pertussis, l’agent responsable de la coqueluche. CyaA a Ă©tĂ© choisie car elle dispose de multiples moyens qui lui permettent d’envahir un grand nombre de cellules eucaryotes. Elle est notamment capable de transloquer son domaine catalytique directement dans la cellule cible puis d’utiliser la calmoduline endogĂšne pour augmenter le taux d’AMPc Ă  des niveaux supraphysiologiques. Cependant l’effet de ces changements sur la signalisation mĂ©cano-chimique (mĂ©canotransduction) a Ă©tĂ© trĂšs peu dĂ©crit alors qu’elle affecte les fonctions et l’intĂ©gritĂ© cellulaires. Nous proposons donc d’évaluer les fonctions cellulaires et les propriĂ©tĂ©s mĂ©caniques et d’adhĂ©sion des cellules Ă©pithĂ©liales respiratoires exposĂ©es Ă  CyaA dans le but de dĂ©celer des modifications fondamentales dans les processus de mĂ©canotransduction.Nous avons tout d’abord menĂ© une Ă©tude prĂ©liminaire visant Ă  dĂ©finir les concentrations physiopathologiques de CyaA utilisĂ©es dans nos expĂ©riences. Nous avons ainsi dĂ©terminĂ© le degrĂ© de viabilitĂ© cellulaire en fonction de 3 concentrations de CyaA (0.5 ; 5 ; 10 nM), ce qui a montrĂ© que la concentration 0.5 nM n’affectait pas la viabilitĂ© cellulaire tout en induisant des niveaux supraphysiologiques d’AMPc en moins d’une heure.Nous avons ensuite cherchĂ© Ă  Ă©valuer les effets de CyaA sur la migration et la rĂ©paration cellulaires, le battement ciliaire et la permĂ©abilitĂ© cellulaire de cellules Ă©pithĂ©liales reprĂ©sentatives des diffĂ©rents niveaux de l’arbre aĂ©rien. CyaA induit une diminution de la migration et de la rĂ©paration cellulaires, ainsi qu’une augmentation de la permĂ©abilitĂ© cellulaire traduisant un affaiblissement des jonctions latĂ©rales.Une Ă©tude en immunoflorescence a ensuite Ă©tĂ© conduite sur les structures intracellulaires et interfaciales des cellules Ă©pithĂ©liales alvĂ©olaires exposĂ©es aux 3 concentrations de CyaA. Cette Ă©tude a montrĂ© que CyaA est capable d’induire un remodelage du cytosquelette d’actine ainsi qu’une diminution du nombre des adhĂ©rences focales. Enfin, une analyse complĂšte des propriĂ©tĂ©s mĂ©caniques et des paramĂštres d’adhĂ©sion a Ă©tĂ© conduite sur les mĂȘmes cellules au moyen de 2 techniques de micro/nanomanipulation revisitĂ©es pour permettre Ă  la fois l’évaluation des liens multiples et de la rigiditĂ© cellulaire (Microscopie Ă  Force Atomique (AFM) avec indentation et MagnĂ©tocytomĂ©trie (MTC)). Pour Ă©valuer le rĂŽle de l’AMPc sur les changements observĂ©s, les cellules Ă©pithĂ©liales respiratoires ont Ă©tĂ© testĂ©es avec la forme active de CyaA et la forme enzymatiquement inactive de la toxine : CyaAE5, qui ne permet pas de synthĂ©tiser l’AMPc.Les expĂ©riences AFM ont rĂ©vĂ©lĂ© que le principal effet de CyaA est de diminuer le nombre de liens intĂ©grine-ligand associĂ©s (une altĂ©ration du clustering) alors qu’à la plus faible concentration de CyaA, nous observons une augmentation de la rigiditĂ© cellulaire, accompagnĂ©e d’un renforcement des liens individuels, Ă©volutions confirmĂ©es par les rĂ©sultats MTC. CyaAE5 ne parvient pas Ă  produire ces mĂȘmes effets.L’ensemble des rĂ©sultats suggĂšre que CyaA affecte de façon prĂ©coce la mĂ©canotransduction des cellules exposĂ©es et ceci en cohĂ©rence avec les effets attendus de l’augmentation d’AMPc (remodelage du CSQ, altĂ©ration des jonctions latĂ©rales, inhibition de l’expression de Rac1), ce qui apporte une nouvelle vision de la cytotoxicitĂ© induite par l’adĂ©nylate cyclase.The increase in respiratory infections involving virulent factors of bacterial origin has become a major public health issue. A better knowledge of the cell respiratory response in the course of the initial cell invasion by bacterial toxins is important from the pathophysiological and therapeutical point of views.The purpose of this work is to decipher the cellular and molecular mechanisms involved in the exposition of respiratory epithelial cells to the adenylate cyclase toxin (CyaA) produced by Bordetella pertussis which is the whooping cough agent. We have chosen this toxin for its multiple capacities of penetrating a wide range of eukaryotic cells. Indeed, this toxin enables direct translocation of its catalytic domain across the plasma membrane of target cells using the endogen calmoduline to increase the cAMP rate at supraphysiological levels. However, the effects of these changes on mechano-chemical signaling (mechanotransduction) pathways remain largely unknown while it affects cellular functions and cell integrity. So, we perform an evaluation of cellular functions as well as mechanical and adhesion properties of respiratory epithelial cells exposed to CyaA toxin in order to detect some critical modifications in the mechanotransduction processes.In a preliminary study aiming at defining physiopathological concentrations of CyaA toxin used in our experiments, we determined the cell viability degree for 3 concentrations of CyaA toxin (0.5; 5 and 10 nM). We found that the smallest concentration (0.5 nM) did not affect cell viability whereas inducing supraphysiological cAMP levels in less than one hour.Then, we assessed the effects of CyaA toxin on cell migration and repair phenomenon, on ciliary beating and on cell permeability of epithelial cells representative of the different levels of the respiratory tract. The toxin induces a decrease in cell migration and repair, an increase in cell permeability suggesting a weakening of lateral cell-cell junctions.Immunostaining was performed on intracellular and interfacial structures of alveolar epithelial cells exposed to the 3 concentrations of CyaA toxin. Results show that CyaA toxin is able to induce cytoskeleton remodeling and a decrease in the number of focal adhesions. Finally, a refined analysis of mechanical properties and adhesion parameters was performed on the same cells by 2 techniques of micro/nanomanipulation modified to permit at the same time, an evaluation of cell adhesion and cell rigidity (Atomic Force Microscopy with indentation and force spectroscopy to characterize the number of bond during adhesion reinforcement and multiscale Magnetic Twisting Cytometry). To evaluate the role of cAMP on cellular and molecular changes, we tested the enzymatically inactive form of CyaA toxin called CyaAE5 which could not permit to increase the intracellular cAMP rate.The AFM experiments have revealed that the main effect of CyaA toxin is to decrease the number of associated integrin-ligand bounds (meaning an alteration of clustering) while, at the smallest concentration of CyaA toxin, we observe an increase in cell rigidity with an individual bound reinforcement, a result consistent with MTC results. Nevertheless, CyaE5 does not exhibit such cellular effects. On the whole, these results suggest that CyaA toxin affects the mechanotransduction pathways of cells exposed to the toxin, a result which is in agreement with the expected effects of cAMP increase (notably cytoskeleton remodeling, lateral junction alteration and inhibition of Rac1 expression) what brings a new vision of the cytotoxicity induced by the adenylate cyclase toxin

    High resolution microfluidic assay and probabilistic modeling reveal cooperation between T cells in tumor killing

    No full text
    International audienceCytotoxic T cells are important components of natural anti-tumor immunity and are harnessed in tumor immunotherapies. Immune responses to tumors and immune therapy outcomes largely vary among individuals, but very few studies examine the contribution of intrinsic behavior of the T cells to this heterogeneity. Here we show the development of a microfluidic-based in vitro method to track the outcome of antigen-specific T cell activity on many individual cancer spheroids simultaneously at high spatiotemporal resolution, which we call Multiscale Immuno-Oncology on-Chip System (MIOCS). By combining parallel measurements of T cell behaviors and tumor fates with probabilistic modeling, we establish that the first recruited T cells initiate a positive feedback loop to accelerate further recruitment to the spheroid. We also provide evidence that cooperation between T cells on the spheroid during the killing phase facilitates tumor destruction. Thus, we propose that both T cell accumulation and killing function rely on collective behaviors rather than simply reflecting the sum of individual T cell activities, and the possibility to track many replicates of immune cell-tumor interactions with the level of detail our system provides may contribute to our understanding of immune response heterogeneity

    Functional and structural consequences of epithelial cell invasion by Bordetella pertussis adenylate cyclase toxin

    No full text
    International audienceBordetella pertussis, the causative agent of whopping cough, produces an adenylate cyclase toxin (CyaA) that plays a key role in the host colonization by targeting innate immune cells which express CD11b/CD18, the cellular receptor of CyaA. CyaA is also able to invade non-phagocytic cells, via a unique entry pathway consisting in a direct translocation of its catalytic domain across the cytoplasmic membrane of the cells. Within the cells, CyaA is activated by calmodulin to produce high levels of cyclic adenosine monophosphate (cAMP) and alter cellular physiology. In this study, we explored the effects of CyaA toxin on the cellular and molecular structure remodeling of A549 alveolar epithelial cells. Using classical imaging techniques, biochemical and functional tests, as well as advanced cell mechanics method, we quantify the structural and functional consequences of the massive increase of intracellular cyclic AMP induced by the toxin: cell shape rounding associated to adhesion weakening process, actin structure remodeling for the cortical and dense components, increase in cytoskeleton stiffness, and inhibition of migration and repair. We also show that, at low concentrations (0.5 nM), CyaA could significantly impair the migration and wound healing capacities of the intoxicated alveolar epithelial cells. As such concentrations might be reached locally during B. pertussis infection, our results suggest that the CyaA, beyond its major role in disabling innate immune cells, might also contribute to the local alteration of the epithelial barrier of the respiratory tract, a hallmark of pertussis

    FcRn-Dependent Transcytosis of Monoclonal Antibody in Human Nasal Epithelial Cells In Vitro: A Prerequisite for a New Delivery Route for Therapy?

    No full text
    Monoclonal antibodies (mAbs) are promising therapies to treat airway chronic inflammatory disease (asthma or nasal polyps). To date, no study has specifically assessed, in vitro, the potential function of neonatal Fc receptor (FcRn) in IgG transcytosis through the human nasal airway epithelium. The objective of this study was to report the in vitro expression and function of FcRn in nasal human epithelium. FcRn expression was studied in an air–liquid interface (ALI) primary culture model of human nasal epithelial cells (HNEC) from polyps. FcRn expression was characterized by quantitative RT-PCR, western blot, and immunolabeling. The ability of HNECs to support mAb transcytosis via FcRn was assessed by transcytosis assay. This study demonstrates the expression of FcRn mRNA and protein in HNEC. We report a high expression of FcRn in the cytosol of ciliated, mucus, and basal cells by immunohistochemistry with a higher level of FcRn proteins in differentiated HNEC. We also proved in vitro transepithelial delivery of an IgG1 therapeutic mAb with a dose–response curve. This is the first time that FcRn expression and mAb transcytosis has been shown in a model of human nasal respiratory epithelium in vitro. This study is a prerequisite for FcRn-dependent nasal administration of mAbs
    corecore