21 research outputs found

    Buone pratiche per la tutela della qualità dell’aria indoor. L’esperienza del Treno Verde 2017

    Get PDF
    La qualità dell’aria ed in particolare la qualità dell’aria all’interno degli edifici, nell’ambito dei temi relativi a salute e benessere della popolazione, assume oggi, importanza sempre più rilevante. I principali problemi legati alla qualità dell'aria Indoor - IAQ (Indoor Air Quality) - sono strettamente correlati alla concentrazione e definizione dei principali composti inquinanti presenti negli ambienti confinati. L’irrinunciabile tema del risparmio energetico ha prodotto precauzioni che hanno condotto, oltre a un maggior isolamento degli edifici ed a una diminuzione dei tassi di ventilazione, anche all’utilizzo di nuovi materiali e di nuove apparecchiature, cioè a misure che aumentano le concentrazioni di agenti inquinanti che si formano nei locali. Nel corso degli ultimi decenni si è difatti assistito a un progressivo deterioramento della qualità dell’aria negli ambienti confinati. Numerosi studi scientifici hanno dimostrato la presenza, nell’aria degli ambienti di vita, di agenti inquinanti a bassa concentrazione di difficile misurazione che possono determinare effetti sulla salute non ancora completamente noti. Gli inquinanti indoor, che possono agire singolarmente o combinati con altri fattori, determinano una diminuzione del comfort ambientale e un rischio per la salute; sono agenti di tipo chimico (composti organici e inorganici), fisico (radiazioni ionizzanti e non ionizzanti) e biologico (microrganismi, muffe, acari). Considerato che gran parte della popolazione trascorre il proprio tempo in ambienti confinati, l’esposizione all’inquinamento indoor è dominante rispetto a quella outdoor. Vengono considerati come sintomi specifici, non gravi, che possono impattare sulla salute e quindi, sui costi sociali del paese: malattie respiratorie trasmissibili, allergie e asma, sintomi della sindrome dell’edificio malato (SBS, dall’inglese Sick Building Syndrome)

    Air pollution survey across the western Mediterranean Sea: overview on oxygenated volatile hydrocarbons (OVOCs) and other gaseous pollutants

    No full text
    Despite the Mediterranean Sea basin is among the most sensitive areas over the world for climate change and air quality issues, it still remains less studied than the oceanic regions. The domain investigated by the research ship Minerva Uno cruise in Summer 2015 was the Tyrrhenian Sea. An overview on the marine boundary layer (MBL) concentration levels of carbonyl compounds, ozone (O3), and sulfur dioxide (SO2) is reported. The north-western Tyrrhenian Sea samples showed a statistically significant difference in acetone and SO2 concentrations when compared to the south-eastern ones. Acetone and SO2 values were higher in the southern part of the basin; presumably, a blend of natural (including volcanism) and anthropogenic (shipping) sources caused this difference. The mean acetone concentration reached 5.4 μg/m3; formaldehyde and acetaldehyde means were equal to 1.1 μg/m3 and 0.38 μg/m3, respectively. Maximums of 3.0 μg/m3 for formaldehyde and 1.0 μg/m3 for acetaldehyde were detected along the route from Civitavecchia to Fiumicino. These two compounds were also present at levels above the average in proximity of petrol-refining plants on the coast; in fact, formaldehyde reached 1.56 μg/m3 and 1.60 μg/m3, respectively, near Milazzo and Augusta harbors; meanwhile, acetaldehyde was as high as 0.75 μg/m3 at both sites. The levels of formaldehyde agreed with previously reported measurements over Mediterranean Sea and elsewhere; besides, a day/night trend was observed, confirming the importance of photochemical formation for this pollutant. According to this study, Mediterranean Sea basin, which is a closed sea, was confirmed to suffer a high anthropic pressure impacting with diffuse emissions, while natural contribution to pollution could come from volcanic activity, particularly in the south-eastern Tyrrhenian Sea regio

    Determinação dos hidrocarbonetos saturados e policíclicos aromáticos presentes no material particulado da atmosfera amazônica Chemical composition of aerosol collected in the amazon forest

    No full text
    <abstract language="eng">It was identified and quantified several organic compounds in the atmosphere of a site into Amazon Basin with high impact of biomass burning emission. It was important to know the particulate matter composition with respect to n-alkanes and PAH associated with the particulate matter because they provided indication on the main sources contributing to airborne particles, the contribution of natural vs. man-made emission and the aging of the particles. The main classes of compounds observed were n-alkanes, PAH and nitro-PAH. It was observed the formation of nitro-PAH from photochemical reactions. The aerosol mass concentration is mainly associated with fluoranthene, pyrene and benzo(ghi)perylene. Environmental and direct emissions samples (flaming and smoldering) were collected and analysed

    Air Quality Assessment in the Central Mediterranean Sea (Tyrrhenian Sea): Anthropic Impact and Miscellaneous Natural Sources, including Volcanic Contribution, on the Budget of Volatile Organic Compounds (VOCs)

    No full text
    The results of air pollution assessment during a 2017 cruise of the research ship “Minerva Uno” in the Tyrrhenian Sea are reported. Volatile Organic Compounds (VOCs), Oxygenated Volatile Organic Compounds (OVOCs), and pollutants such as nitrogen oxides, ozone, and sulphur dioxide were monitored throughout the cruise. The shallow waters at ten sites of the investigated area were also analyzed. Organic compounds such as n-alkanes showed a bimodal distribution with a maximum at C5–C6 and C10–C11 at sites the most affected by anthropic impact, whereas remote sites showed a unimodal distribution with maximum at C10–C11. The most abundant atmospheric OVOC was acetone (3.66 μg/m3), accounting for 38%; formaldehyde (1.23 μg/m3) and acetaldehyde (0.99 μg/m3) made up about 22–29% of the total. The influence of some natural sources as volcanoes, in the southern part of the Tyrrhenian Sea near the Aeolian arc was studied. This source did not induce any noticeable effect on the total amount of hydrocarbons nor on the levels of trace gases such as CFCs, whereas the trends of sulphur dioxide seemed to confirm a possible contribution. The impact of underwater emissions was observed near the Panarea and Vulcano islands, where lower pHs, high levels of Fe and Mn, and diagnostic of vent activity, were measured
    corecore