2,561 research outputs found

    Molecular structural order and anomalies in liquid silica

    Full text link
    The present investigation examines the relationship between structural order, diffusivity anomalies, and density anomalies in liquid silica by means of molecular dynamics simulations. We use previously defined orientational and translational order parameters to quantify local structural order in atomic configurations. Extensive simulations are performed at different state points to measure structural order, diffusivity, and thermodynamic properties. It is found that silica shares many trends recently reported for water [J. R. Errington and P. G. Debenedetti, Nature 409, 318 (2001)]. At intermediate densities, the distribution of local orientational order is bimodal. At fixed temperature, order parameter extrema occur upon compression: a maximum in orientational order followed by a minimum in translational order. Unlike water, however, silica's translational order parameter minimum is broad, and there is no range of thermodynamic conditions where both parameters are strictly coupled. Furthermore, the temperature-density regime where both structural order parameters decrease upon isothermal compression (the structurally anomalous regime) does not encompass the region of diffusivity anomalies, as was the case for water.Comment: 30 pages, 8 figure

    Subdiffusion and cage effect in a sheared granular material

    Full text link
    We investigate experimentally the diffusion properties of a bidimensional bidisperse dry granular material under quasistatic cyclic shear.The comparison of these properties with results obtained both in computer simulations of hard spheres systems and Lenard-Jones liquids and experiments on colloidal systems near the glass transition demonstrates a strong analogy between the behaviour of granular matter and these systems. More specifically, we study in detail the cage dynamics responsible for the subdiffusion in the slow relaxation regime, and obtain the values of relevant time and length scales.Comment: 4 pages, 6 figures, submitted to PR

    Two-Gaussian excitations model for the glass transition

    Full text link
    We develop a modified "two-state" model with Gaussian widths for the site energies of both ground and excited states, consistent with expectations for a disordered system. The thermodynamic properties of the system are analyzed in configuration space and found to bridge the gap between simple two state models ("logarithmic" model in configuration space) and the random energy model ("Gaussian" model in configuration space). The Kauzmann singularity given by the random energy model remains for very fragile liquids but is suppressed or eliminated for stronger liquids. The sharp form of constant volume heat capacity found by recent simulations for binary mixed Lennard Jones and soft sphere systems is reproduced by the model, as is the excess entropy and heat capacity of a variety of laboratory systems, strong and fragile. The ideal glass in all cases has a narrow Gaussian, almost invariant among molecular and atomic glassformers, while the excited state Gaussian depends on the system and its width plays a role in the thermodynamic fragility. The model predicts the existence of first-order phase transition for fragile liquids.Comment: 12 pages, 12 figure

    Don't Distract Me When I'm Media Multitasking: Toward a Theory for Raising Advertising Recall and Recognition

    Get PDF
    Media multitasking, such as using handheld devices like smartphones and tablets while watching TV, has become prevalent but its effect on the recall and recognition of advertising subject to limited academic research. We contend that the context in which multitasking takes place affects consumer memory for advertising delivered via the primary activity (e.g., watching television). Specifically, we identify the importance of the degree of (a) congruence between the primary and second screen activity and (b) social accountability of second screen activities. We test our typology empirically by examining the determinants of next day recall and recognition for billboard advertisers (perimeter board advertisements) of a televised football (soccer) match. In line with our theory, in most cases media multitasking leads to worse recall and recognition, however, in situations where there is congruence between primary and second screen activities and secondary activities have a higher level of social accountability attached to them, then advertising recall and recognition improves

    Effects of compression on the vibrational modes of marginally jammed solids

    Full text link
    Glasses have a large excess of low-frequency vibrational modes in comparison with most crystalline solids. We show that such a feature is a necessary consequence of the weak connectivity of the solid, and that the frequency of modes in excess is very sensitive to the pressure. We analyze in particular two systems whose density D(w) of vibrational modes of angular frequency w display scaling behaviors with the packing fraction: (i) simulations of jammed packings of particles interacting through finite-range, purely repulsive potentials, comprised of weakly compressed spheres at zero temperature and (ii) a system with the same network of contacts, but where the force between any particles in contact (and therefore the total pressure) is set to zero. We account in the two cases for the observed a) convergence of D(w) toward a non-zero constant as w goes to 0, b) appearance of a low-frequency cutoff w*, and c) power-law increase of w* with compression. Differences between these two systems occur at lower frequency. The density of states of the modified system displays an abrupt plateau that appears at w*, below which we expect the system to behave as a normal, continuous, elastic body. In the unmodified system, the pressure lowers the frequency of the modes in excess. The requirement of stability despite the destabilizing effect of pressure yields a lower bound on the number of extra contact per particle dz: dz > p^(1/2), which generalizes the Maxwell criterion for rigidity when pressure is present. This scaling behavior is observed in the simulations. We finally discuss how the cooling procedure can affect the microscopic structure and the density of normal modes.Comment: 13 pages, 8 figure

    Effect of dynamic stall on the aerodynamics of vertical-axis wind turbines

    Get PDF
    Accurate simulations of the aerodynamic performance of vertical-axis wind turbines pose a significant challenge for computational fluid dynamics methods. The aerodynamic interaction between the blades of the rotor and the wake that is produced by the blades requires a high-fidelity representation of the convection of vorticity within the wake. In addition, the cyclic motion of the blades induces large variations in the angle of attack on the blades that can manifest as dynamic stall. The present paper describes the application of a numerical model that is based on the vorticity transport formulation of the Navier–Stokes equations, to the prediction of the aerodynamics of a verticalaxis wind turbine that consists of three curved rotor blades that are twisted helically around the rotational axis of the rotor. The predicted variation of the power coefficient with tip speed ratio compares very favorably with experimental measurements. It is demonstrated that helical blade twist reduces the oscillation of the power coefficient that is an inherent feature of turbines with non-twisted blade configurations

    Inhomogeneous elastic response of silica glass

    Full text link
    Using large scale molecular dynamics simulations we investigate the properties of the {\em non-affine} displacement field induced by macroscopic uniaxial deformation of amorphous silica,a strong glass according to Angell's classification. We demonstrate the existence of a length scale ξ\xi characterizing the correlations of this field (corresponding to a volume of about 1000 atoms), and compare its structure to the one observed in a standard fragile model glass. The "Boson-peak'' anomaly of the density of states can be traced back in both cases to elastic inhomogeneities on wavelengths smaller than ξ\xi, where classical continuum elasticity becomes simply unapplicable

    Fast Simulation of Facilitated Spin Models

    Full text link
    We show how to apply the absorbing Markov chain Monte Carlo algorithm of Novotny to simulate kinetically constrained models of glasses. We consider in detail one-spin facilitated models, such as the East model and its generalizations to arbitrary dimensions. We investigate how to maximise the efficiency of the algorithms, and show that simulation times can be improved on standard continuous time Monte Carlo by several orders of magnitude. We illustrate the method with equilibrium and aging results. These include a study of relaxation times in the East model for dimensions d=1 to d=13, which provides further evidence that the hierarchical relaxation in this model is present in all dimensions. We discuss how the method can be applied to other kinetically constrained models.Comment: 8 pages, 4 figure

    Liquid Limits: The Glass Transition and Liquid-Gas Spinodal Boundaries of Metastable Liquids

    Full text link
    The liquid-gas spinodal and the glass transition define ultimate boundaries beyond which substances cannot exist as (stable or metastable) liquids. The relation between these limits is analyzed {\it via} computer simulations of a model liquid. The results obtained indicate that the liquid - gas spinodal and the glass transition lines intersect at a finite temperature, implying a glass - gas mechanical instability locus at low temperatures. The glass transition lines obtained by thermodynamic and dynamic criteria agree very well with each other.Comment: 5 pages, 4 figures, to appear in Phys. Rev. Let

    The Proliferation of Special Accounting Items: A Threat to Corporate Credibility

    Get PDF
    Betty L. Brewer, DBA, CFP, is associate professor of finance, Department of Business and Economics, North Carolina A&T State University, Greensboro, NC 27411. Robert J. Angell, DBA, is professor of finance, Department of Business Administration, School of Business and Economics, North Carolina A&T State University, Greensboro, NC 27411. R. David Mautz, Jr., Ph.D., CPA, is associate professor of accounting, Department of Accounting, School of Business and Economics, North Carolina A&T State University, Greensboro, NC 27411
    corecore