8 research outputs found

    Pour un dialogue entre science politique et science studies

    Get PDF
    Les deux disciplines de science politique et de science studies utilisent toutes deux les mots de « politique » et de « science », mais dans des sens qui semblent incommensurables. L’article propose d’expliquer aux spécialistes des sciences politiques l’emploi quelque peu inhabituel qui est fait de ces termes par les praticiens des études sur les sciences, de façon à établir un dialogue entre les deux disciplines. Il montre en particulier qu’un seul des sens du mot « science » (sur quatre) suppose une coupure radicale entre science et politique (qui peut prendre six sens). Cet effort de clarification effectué permettrait d’abandonner l’idée qu’il existe deux domaines distincts (la science et la politique) et permettrait aux disciplines de collaborer en qualifiant les différents stades des affaires (les issues) qui forment la vraie substance des sciences aussi bien que des politiques

    Thermal mixing in a T-junction: Novel CFD-grade measurements of the fluctuating temperature in the solid wall

    Get PDF
    International audienceThis article reports new experiments performed with the purpose of generating novel data of the fluctuating temperature inside the solid in the mixing region between hot and cold water in a T-junction. This data has been measured using a novel sensor (coefh) developed at the Commissariat Ă  l'Energie Atomique et aux Energies Alternatives (CEA) in Cadarache, France. These experiments are performed within the framework of the MOTHER project. The main objective of the MOTHER project is to validate various CFD approaches (such as LES, Hybrid i.e. RANS/LES and RANS) for transient heat transfer in a T-junction configuration including the pipe wall. Hence, the performed experiments have focused on accurately measuring and documenting the boundary conditions to be able to have a well-defined database for CFD validation. The tests are performed for two different Reynolds numbers 40000 and 60000 and for two different T-junction geometries; a sharp corner and a round corner

    A Contraction Based Solution for the Improvement of Fish Ladder Attraction Flow

    Get PDF
    A new, potentially cost efficient, concept for improving the attraction flow to a fish ladder has been investigated in a case study. For the upstream migrating Atlantic salmon to reach the fish ladder and by-pass the case study hydropower plant, it must be able to localize the attraction flow where it enters the main flow from the tailrace of the hydropower plant in the so-called confluence area. Here the comparatively small and limited attraction flow from the old river channel must be improved in order to be able compete with the substantially larger main flow. The objective of the present study is to investigate the feasibility of a new concept for further improvement of the attraction flow using guiding walls forming a contraction channel. Field measurements were performed tracing tagged fish in the confluence area downstream of the case study hydropower plant in order to understand the movement pattern of the fish. Based on the results, and results from bathymetry measurements in the same area, a physical scale model was constructed where it was experimentally demonstrated that it is hydraulically feasible to construct guiding walls, forming a contraction, which accelerate the attraction flow and generate a concentrated turbulent jet with a higher velocity, while keeping the flow rate unchanged. The attraction flow penetrates about half-way (70 m) into the main flow and reaches the position where most fish are positioned according to fish position measurements and therefore potentially has a good ability to attract upstream migrating fish. There is no negative impact on the water level in the confluence area and thereby not on electricity production. It was shown that the results can be scaled up to prototype conditions and the strategy can presumably be generalized to similar flow situations, existing at other hydropower plants, allowing for improved upstream fish migration in coexistence with a sound hydropower production

    Experimental studies of turbulent boundary layer separation and control

    No full text
    The object ofthe present work is to experimentally study thecase ofa turbulent boundary layer subjected to an AdversePressure Gradient (APG) with separation and reattachment. Thisconstitutes a good test case for advanced turbulence modeling.The work consists ofde sign of a wind-tunnel setup, developmentofP article Image Velocimetry (PIV) measurements and evaluationtechniques for boundary layer flows, investigations ofs calingofb oundary layers with APG and separation and studies oftheturbulence structure ofthe separating boundary layer withcontrol by means ofs treamwise vortices. The accuracy ofP IV isinvestigated in the near-wall region ofa zero pressure-gradientturbulent boundary layer at high Reynolds number. It is shownthat, by careful design oft he experiment and correctly appliedvalidation criteria, PIV is a serious alternative toconventional techniques for well-resolved accurate turbulencemeasurements. The results from peak-locking simulationsconstitute useful guide-lines for the effect on the turbulencestatistics. Its symptoms are identified and criteria for whenthis needs to be considered are presented. Different velocityscalings are tested against the new data base on a separatingAPG boundary layer. It is shown that a velocity scale relatedto the local pressure gradient gives similarity not only forthe mean velocity but also to some extent for the Reynoldsshear-stress. Another velocity scale, which is claimed to berelated to the maximum Reynolds shear-stress, gives the samedegree of similarity which connects the two scalings. However,profile similarity achieved within an experiment is notuniversal and this flow is obviously governed by parameterswhich are still not accounted for. Turbulent boundary layerseparation control by means ofs treamwise vortices isinvestigated. The instantaneous interaction between thevortices and the boundary layer and the change in the boundarylayer and turbulence structure is presented. The vortices aregrowing with the boundary layer and the maximum vorticity isdecreased as the circulation is conserved. The vortices arenon-stationary and subjected to vortex stretching. Themovements contribute to large levels ofthe Reynolds stresses.Initially non-equidistant vortices become and remainequidistant and are con- fined to the boundary layer. Theamount ofi nitial streamwise circulationwas found to be acrucial parameter for successful separation control whereas thevortex generator position and size is ofseco ndary importance.At symmetry planes the turbulence is relaxed to a nearisotropic state and the turbulence kinetic energy is decreasedcompared to the case without vortices. Keywords:Turbulence, Boundary layer, Separation,Adverse Pressure Gradient (APG), PIV, control, streamwisevortices, velocity scaling.NR 2014080

    Investigation of Thermal Mixing in the Control Rod Top Tube Using Large Eddy Simulation

    No full text
    Thermal mixing and thermal fatigue has led to component failures in the nuclear industry. The thermal fatigue phenomenon is intimately linked with the mixing of streams of different temperatures in proximity to a solid wall. Due to conjugate heat transfer, temperature fluctuations are induced in the wall. One of the key issues is to predict the amplitude and the frequency of the fluctuations. This paper presents pre-calculations of the thermal mixing experiments that are under preparation at the KTH Royal Institute of Technology as part of the THEMFE project (Thermal Mixing and Fatigue Experiment). The proposed geometry is a simplification of a reactor control rod and consists of a top-tube and control rod stem, which are modeled as concentric cylinders. In addition there are only two hot inlet jets and two cold inlet jets, whereas in reality there are 8 upper inlets and 4 lower inlets for hot bypass water and the cold flow is annular. Thermal mixing was studied by using a transient Computational Fluid Dynamics (CFD) solver for the incompressible filtered Navier-Stokes equations and employing a Large Eddy Simulation model of turbulence implemented in OpenFOAM. The aim was to verify that the proposed simplified geometry and the flow conditions of the experiment will lead to low frequent temperature fluctuations of the order of 0.1-1 Hz, as seen in previous experiments with the real geometry. Such low frequencies are typical for the thermal fatigue phenomenon. The study was focused on the region near the control rod stem and therefore a refined grid was used in that region. The final mesh consisted of over one million cells. The results did indeed reveal low frequent temperature fluctuations in the lower part of the mixing region near the control rod stem. The results of this paper indicate that the length of the mixing region is 23 cm, which is large enough to be resolved in the experiment. It was also found that the most dangerous region, where the dominant high amplitude temperature fluctuations have a frequency of the order of 0.1 Hz, is 4 cm long. As expected, the instant flow field is asymmetric with large secondary flows. The present results verify that the proposed geometry and flow conditions can be applied in the experiment.QC 20141204THEMF

    Numerical modelling for design of spillway refurbishing

    No full text
    Mathematical modelling of single spillways is well documented in literature. For parallel spillways however, there is a lack of documented, verified, and validated cases. Here, in this article, ANSYS-CFX is used to simulate the flow over three parallel ogee-crested spillways. For mesh size verification, a grid convergence study is performed by Richardson extrapolation. The turbulence model chosen for this simulation is the k-ε model and the volume of fluid method is used to simulate the water-air interface. This article details the models ability to accurately predict flow distribution at the spillways, and the water levels. The mesh is kept relatively coarse at the channel inlet with increased mesh density at the spillways. The results are validated against experimental data from Vattenfall AB, R&Ds laboratories. The geometry and boundary conditions of the experiment are tailored for CFD. The flow rate of each spillway is measured separately with high accuracy, and for several different inlet volumetric flows. The simulation results lie within the error estimates of the measuring tools used in the experiments, within ±1%. The volume flow rate differences between the three outlets is very small, within ±1%

    Case Study of Transient Dynamics in a Bypass Reach

    No full text
    The operating conditions of Nordic hydropower plants are expected to change in the coming years to work more in conjunction with intermittent power production, causing more frequent hydropeaking events. Hydropeaking has been shown to be detrimental to wildlife in the river reaches downstream of hydropower plants. In this work, we investigate how different possible future hydropeaking scenarios affect the water surface elevation dynamics in a bypass reach in the Ume River in northern Sweden. The river dynamics has been modeled using the open-source solver Delft3D. The numerical model was validated and calibrated with water-surface-elevation measurements. A hysteresis effect on the water surface elevation, varying with the downstream distance from the spillways, was seen in both the simulated and the measured data. Increasing the hydropeaking rate is shown to dampen the variation in water surface elevation and wetted area in the most downstream parts of the reach, which could have positive effects on habitat and bed stability compared to slower rates in that region.Validerad;2020;NivĂĄ 2;2020-07-15 (alebob)HydroFle
    corecore