377 research outputs found

    The transcription factor ATF5: role in cellular differentiation, stress responses, and cancer.

    Get PDF
    Activating transcription factor 5 (ATF5) is a cellular prosurvival transcription factor within the basic leucine zipper (bZip) family that is involved in cellular differentiation and promotes cellular adaptation to stress. Recent studies have characterized the oncogenic role of ATF5 in the development of several different types of cancer, notably glioblastoma. Preclinical assessment of a systemically deliverable dominant-negative ATF5 (dnATF5) biologic has found that targeting ATF5 results in tumor regression and tumor growth inhibition of glioblastoma xenografts in mouse models. In this review, we comprehensively and critically detail the current scientific literature on ATF5 in the context of cellular differentiation, survival, and response to stressors in normal tissues. Furthermore, we will discuss how the prosurvival role of ATF5 aides in cancer development, followed by current advances in targeting ATF5 using dominant-negative biologics, and perspectives on future research

    Chemoenzymatic synthesis of isotopically labelled folates

    Get PDF
    Dihydrofolate reductase (DHFR) is a key enzyme in cellular anabolism. It catalyses the reduction of 7,8-dihydrofolate (H2F) to 5,6,7,8-tetrahydrofolate (H4F) via hydride transfer from the C4 position of NADPH to the C6 position of H2F accompanied with protonation at the N5 position of H2F. Due to the importance of DHFR as an anticancer and antimicrobial target, the catalytic mechanism of DHFR has long been the focus of intense research. Kinetic isotope effect (KIE) measurements can provide insight into the mechanism of DHFR catalysis and guide the rational design of novel anti-DHFR drugs. However,because of a lack of a practical strategy to introduce heavy atoms (15N, 13C) into H2F, current research is mostly restrained to the study of hydrogen isotope effects. In this thesis, a fourteen step, one-pot chemoenzymatic synthesis of labelled H2F is reported. The flexibility of this synthetic approach enables the production of various isotopically enriched H2Fs from simple starting materials such as D-glucose. The labelled substrates were used to measure, for the first time, heavy atom KIEs and to derive information about the transition state of the chemical step during DHFR catalysis. This methodology is widely applicable to other biochemically important substrates and cofactors and it can be used for a wide variety of in vitro and in vivo investigations

    Christine Jacobs-Wagner: Drawing the bacterial organizational chart

    Get PDF
    Jacobs-Wagner has been at the forefront of a revolution in bacterial cell biology

    Optimization of Ni-Based WC/Co/Cr Composite Coatings Produced by Multilayer Laser Cladding

    Get PDF
    As a surface coating technique, laser cladding (LC) has been developed for improving wear, corrosion, and fatigue properties of mechanical components. The main advantage of this process is the capability of introducing hard particles such as SiC, TiC, and WC as reinforcements in the metallic matrix such as Ni-based alloy, Co-based alloy, and Fe-based alloy to form ceramic-metal composite coatings, which have very high hardness and good wear resistance. In this paper, Ni-based alloy (Colmonoy 227-F) and Tungsten Carbides/Cobalt/Chromium (WC/Co/Cr) composite coatings were fabricated by the multilayer laser cladding technique (MLC). An optimization procedure was implemented to obtain the combination of process parameters that minimizes the porosity and produces good adhesion to a stainless steel substrate. The optimization procedure was worked out with a mathematical model that was supported by an experimental analysis, which studied the shape of the clad track generated by melting coaxially fed powders with a laser. Microstructural and microhardness analysis completed the set of test performed on the coatings
    • …
    corecore