27 research outputs found

    Screen time is associated with adiposity and insulin resistance in children

    Get PDF
    Higher screen time is associated with type 2 diabetes (T2D) risk in adults, but the association with T2D risk markers in children is unclear. We examined associations between self-reported screen time and T2D risk markers in children. Survey of 4495 children aged 9-10 years who had fasting cardiometabolic risk marker assessments, anthropometry measurements and reported daily screen time; objective physical activity was measured in a subset of 2031 children. Compared with an hour or less screen time daily, those reporting screen time over 3 hours had higher ponderal index (1.9%, 95% CI 0.5% to 3.4%), skinfold thickness (4.5%, 0.2% to 8.8%), fat mass index (3.3%, 0.0% to 6.7%), leptin (9.2%, 1.1% to 18.0%) and insulin resistance (10.5%, 4.9% to 16.4%); associations with glucose, HbA1c, physical activity and cardiovascular risk markers were weak or absent. Associations with insulin resistance remained after adjustment for adiposity, socioeconomic markers and physical activity. Strong graded associations between screen time, adiposity and insulin resistance suggest that reducing screen time could facilitate early T2D prevention. While these observations are of considerable public health interest, evidence from randomised controlled trials is needed to suggest causality. [Abstract copyright: Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

    Regular breakfast consumption and type 2 diabetes risk markers in 9- to 10-year-old children in the child heart and health study in England (CHASE): a cross-sectional analysis.

    Get PDF
    BACKGROUND: Regular breakfast consumption may protect against type 2 diabetes risk in adults but little is known about its influence on type 2 diabetes risk markers in children. We investigated the associations between breakfast consumption (frequency and content) and risk markers for type 2 diabetes (particularly insulin resistance and glycaemia) and cardiovascular disease in children. METHODS AND FINDINGS: We conducted a cross-sectional study of 4,116 UK primary school children aged 9-10 years. Participants provided information on breakfast frequency, had measurements of body composition, and gave fasting blood samples for measurements of blood lipids, insulin, glucose, and glycated haemoglobin (HbA1c). A subgroup of 2,004 children also completed a 24-hour dietary recall. Among 4,116 children studied, 3,056 (74%) ate breakfast daily, 450 (11%) most days, 372 (9%) some days, and 238 (6%) not usually. Graded associations between breakfast frequency and risk markers were observed; children who reported not usually having breakfast had higher fasting insulin (percent difference 26.4%, 95% CI 16.6%-37.0%), insulin resistance (percent difference 26.7%, 95% CI 17.0%-37.2%), HbA1c (percent difference 1.2%, 95% CI 0.4%-2.0%), glucose (percent difference 1.0%, 95% CI 0.0%-2.0%), and urate (percent difference 6%, 95% CI 3%-10%) than those who reported having breakfast daily; these differences were little affected by adjustment for adiposity, socioeconomic status, and physical activity levels. When the higher levels of triglyceride, systolic blood pressure, and C-reactive protein for those who usually did not eat breakfast relative to those who ate breakfast daily were adjusted for adiposity, the differences were no longer significant. Children eating a high fibre cereal breakfast had lower insulin resistance than those eating other breakfast types (p for heterogeneity <0.01). Differences in nutrient intakes between breakfast frequency groups did not account for the differences in type 2 diabetes markers. CONCLUSIONS: Children who ate breakfast daily, particularly a high fibre cereal breakfast, had a more favourable type 2 diabetes risk profile. Trials are needed to quantify the protective effect of breakfast on emerging type 2 diabetes risk. Please see later in the article for the Editors' Summary

    Reassessing Ethnic Differences in Mean BMI and Changes Between 2007 and 2013 in English Children.

    Get PDF
    OBJECTIVE: National body fatness (BF) data for English South Asian and Black children use BMI, which provides inaccurate ethnic comparisons. BF levels and time trends in the English National Child Measurement Programme (NCMP) between 2007 and 2013 were assessed by using ethnic-specific adjusted BMI (aBMI) for South Asian and Black children. METHODS: Analyses were based on 3,195,323 children aged 4 to 5 years and 2,962,673 children aged 10 to 11 years. aBMI values for South Asian and Black children (relating to BF as in White children) were derived independently. Mean aBMI levels and 5-year aBMI changes were obtained by using linear regression. RESULTS: In the 2007-2008 NCMP, mean aBMIs in 10- to 11-year-old children (boys, girls) were higher in South Asian children (20.1, 19.9 kg/m2 ) and Black girls, but not in Black boys (18.4, 19.2 kg/m2 ) when compared with White children (18.6, 19.0 kg/m2 ; all P < 0.001). Mean 5-year changes (boys, girls) were higher in South Asian children (0.16, 0.32 kg/m2 per 5 y; both P < 0.001) and Black boys but not girls (0.13, 0.15 kg/m2 per 5 y; P = 0.01, P = 0.41) compared with White children (0.02, 0.11 kg/m2 per 5 y). Ethnic differences at 4 to 5 years were similar. Unadjusted BMI showed similar 5-year changes but different mean BMI patterns. CONCLUSIONS: BF levels were higher in South Asian children than in other groups in 2007 and diverged from those in White children until 2013, a pattern not apparent from unadjusted BMI data

    Takeaway meal consumption and risk markers for coronary heart disease, type 2 diabetes and obesity in children aged 9-10 years: a cross-sectional study.

    Get PDF
    OBJECTIVE: To investigate associations between takeaway meal consumption and risk markers for coronary heart disease, type 2 diabetes and obesity risk markers in children. DESIGN: A cross-sectional, school-based observational study. SETTING: 85 primary schools across London, Birmingham and Leicester. PARTICIPANTS: 1948 UK primary school children in year 5, aged 9-10 years. MAIN OUTCOME MEASURES: Children reported their frequency of takeaway meal consumption, completed a 24-hour dietary recall, had physical measurements and provided a fasting blood sample. RESULTS: Among 1948 participants with complete data, 499 (26%) never/hardly ever consumed a takeaway meal, 894 (46%) did so <1/week and 555 (28%) did ≥1/week. In models adjusted for age, sex, month, school, ethnicity and socioeconomic status, more frequent takeaway meal consumption was associated with higher dietary intakes of energy, fat % energy and saturated fat % energy and higher energy density (all P trend <0.001) and lower starch, protein and micronutrient intakes (all P trend <0.05). A higher frequency of takeaway meal consumption was associated with higher serum total cholesterol and low-density lipoprotein (LDL) cholesterol (P trend=0.04, 0.01, respectively); children eating a takeaway meal ≥1/week had total cholesterol and LDL cholesterol 0.09 mmol/L (95% CI 0.01 to 0.18) and 0.10 mmol/L (95% CI 0.02 to 0.18) higher respectively than children never/hardly ever eating a takeaway meal; their fat mass index was also higher. CONCLUSIONS: More frequent takeaway meal consumption in children was associated with unhealthy dietary nutrient intake patterns and potentially with adverse longer term consequences for obesity and coronary heart disease risk

    Birthweight and risk markers for type 2 diabetes and cardiovascular disease in childhood: the Child Heart and Health Study in England (CHASE).

    Get PDF
    AIMS/HYPOTHESIS: Lower birthweight (a marker of fetal undernutrition) is associated with higher risks of type 2 diabetes and cardiovascular disease (CVD) and could explain ethnic differences in these diseases. We examined associations between birthweight and risk markers for diabetes and CVD in UK-resident white European, South Asian and black African-Caribbean children. METHODS: In a cross-sectional study of risk markers for diabetes and CVD in 9- to 10-year-old children of different ethnic origins, birthweight was obtained from health records and/or parental recall. Associations between birthweight and risk markers were estimated using multilevel linear regression to account for clustering in children from the same school. RESULTS: Key data were available for 3,744 (66%) singleton study participants. In analyses adjusted for age, sex and ethnicity, birthweight was inversely associated with serum urate and positively associated with systolic BP. After additional height adjustment, lower birthweight (per 100 g) was associated with higher serum urate (0.52%; 95% CI 0.38, 0.66), fasting serum insulin (0.41%; 95% CI 0.08, 0.74), HbA1c (0.04%; 95% CI 0.00, 0.08), plasma glucose (0.06%; 95% CI 0.02, 0.10) and serum triacylglycerol (0.30%; 95% CI 0.09, 0.51) but not with BP or blood cholesterol. Birthweight was lower among children of South Asian (231 g lower; 95% CI 183, 280) and black African-Caribbean origin (81 g lower; 95% CI 30, 132). However, adjustment for birthweight had no effect on ethnic differences in risk markers. CONCLUSIONS/INTERPRETATION: Birthweight was inversely associated with urate and with insulin and glycaemia after adjustment for current height. Lower birthweight does not appear to explain emerging ethnic difference in risk markers for diabetes

    The contribution of physical fitness to individual and ethnic differences in risk markers for type 2 diabetes in children: The Child Heart and Health Study in England (CHASE).

    Get PDF
    BACKGROUND: The relationship between physical fitness and risk markers for type 2 diabetes (T2D) in children and the contribution to ethnic differences in these risk markers have been little studied. We examined associations between physical fitness and early risk markers for T2D and cardiovascular disease in 9- to 10-year-old UK children. METHODS: Cross-sectional study of 1445 9- to 10-year-old UK children of South Asian, black African-Caribbean and white European origin. A fasting blood sample was used for measurement of insulin, glucose (from which homeostasis model assessment [HOMA]-insulin resistance [IR] was derived), glycated hemoglobin (HbA1c), urate, C-reactive protein (CRP), and lipids. Measurements of blood pressure (BP) and fat mass index (FMI) were made; physical activity was measured by accelerometry. Estimated VO2 max was derived from a submaximal fitness step test. Associations were estimated using multilevel linear regression. RESULTS: Higher VO2 max was associated with lower FMI, insulin, HOMA-IR, HbA1c, glucose, urate, CRP, triglycerides, LDL-cholesterol, BP and higher HDL-cholesterol. Associations were reduced by adjustment for FMI, but those for insulin, HOMA-IR, glucose, urate, CRP, triglycerides and BP remained statistically significant. Higher levels of insulin and HOMA-IR in South Asian children were partially explained by lower levels of VO2max compared to white Europeans, accounting for 11% of the difference. CONCLUSIONS: Physical fitness is associated with risk markers for T2D and CVD in children, which persist after adjustment for adiposity. Higher levels of IR in South Asians are partially explained by lower physical fitness levels compared to white Europeans. Improving physical fitness may provide scope for reducing risks of T2D

    Body-mass index adjustments to increase the validity of body fatness assessment in UK black African and South Asian children: a cross-sectional calibration study

    Get PDF
    BackgroundExcess childhood body fatness, overweightness, and obesity are a major public health challenge in the UK. Accurate assessments, usually based on body-mass index (BMI), are crucial. However, recent studies have demonstrated that BMI underestimates body fatness in South Asian children and overestimates it in black African children. These errors are a concern in these ethnic minority populations, particularly UK South Asians, who are at high risk of obesity, type 2 diabetes, and cardiovascular disease. We aimed to develop BMI adjustments for these children to ensure that BMI relates to body fatness in the same way as for white European children.MethodsFour recent UK population-based studies, which used deuterium dilution assessments of fat mass as a reference method, were pooled to include 1725 children (52% girls) aged 4–12 years (mean 9·3, SD 1·6) of white European, South Asian, and black African origins. A height-standardised fat-mass index (FMI) was derived to represent body fatness. Linear regression models were fitted, separately by sex, to quantify ethnic differences in BMI–FMI associations and to provide ethnic-specific BMI adjustments.FindingsThe FMI derived for this study population and used in analyses was fat mass/height5, which was independent of height for the 4–12-year age-group. BMI consistently underestimated body fatness in South Asians, requiring a BMI adjustment of +1·12 kg/m2 (95% CI 0·83–1·41) for boys and +1·07 (0·74–1·39) for girls, irrespective of age and FMI. BMI overestimated body fatness in black Africans. However, adjustments for black African children were more complex, with statistically significant interactions between black African ethnicity and FMI (p=0·004 boys, p=0·003 girls) and between FMI and age-group (p\u3c0·0001 boys and girls). BMI adjustments therefore varied by age-group and FMI level, between −0·24 and −2·84 kg/m2 for boys and between −0·22 and −2·86 kg/m2 for girls for unadjusted BMI values of 13 kg/m2 in 10–12 year-olds and 25 kg/m2 in 4–6 year-olds, respectively.InterpretationBMI underestimated body fatness in South Asians and overestimated it in black Africans. Ethnic-specific adjustments—increasing BMI in South Asians and reducing BMI in black Africans—can improve the accuracy of body fatness assessment in these children.FundingThis work was supported by the British Heart Foundation (grant ref PG/15/19/31336) and National Institute for Health Research Collaboration for Leadership in Applied Health Research and Care (South London) (grant ref CLAHRC-2013-10022). Primary data collection was funded by the British Heart Foundation (PG/11/42/28895), BUPA Foundation (TBF-S09-019), Child Growth Foundation (GR 10/03), and Wellcome Trust (WT094129MA). MF is supported by Great Ormond Street Hospital Childrens\u27 Charity

    Are Ethnic and Gender Specific Equations Needed to Derive Fat Free Mass from Bioelectrical Impedance in Children of South Asian, Black African-Caribbean and White European Origin? Results of the Assessment of Body Composition in Children Study

    Get PDF
    Background Bioelectrical impedance analysis (BIA) is a potentially valuable method for assessing lean mass and body fat levels in children from different ethnic groups. We examined the need for ethnic- and gender-specific equations for estimating fat free mass (FFM) from BIA in children from different ethnic groups and examined their effects on the assessment of ethnic differences in body fat. Methods Cross-sectional study of children aged 8–10 years in London Primary schools including 325 South Asians, 250 black African-Caribbeans and 289 white Europeans with measurements of height, weight and arm-leg impedance (Z; Bodystat 1500). Total body water was estimated from deuterium dilution and converted to FFM. Multilevel models were used to derive three types of equation {A: FFM = linear combination(height+weight+Z); B: FFM = linear combination(height2/Z); C: FFM = linear combination(height2/Z+weight)}. Results Ethnicity and gender were important predictors of FFM and improved model fit in all equations. The models of best fit were ethnicity and gender specific versions of equation A, followed by equation C; these provided accurate assessments of ethnic differences in FFM and FM. In contrast, the use of generic equations led to underestimation of both the negative South Asian-white European FFM difference and the positive black African-Caribbean-white European FFM difference (by 0.53 kg and by 0.73 kg respectively for equation A). The use of generic equations underestimated the positive South Asian-white European difference in fat mass (FM) and overestimated the positive black African-Caribbean-white European difference in FM (by 4.7% and 10.1% respectively for equation A). Consistent results were observed when the equations were applied to a large external data set. Conclusions Ethnic- and gender-specific equations for predicting FFM from BIA provide better estimates of ethnic differences in FFM and FM in children, while generic equations can misrepresent these ethnic differences

    Ethnic differences in blood lipids and dietary intake between UK children of black African, black Caribbean, South Asian, and white European origin: the Child Heart and Health Study in England (CHASE).

    Get PDF
    BACKGROUND: Ischemic heart disease (IHD) rates are lower in UK black Africans and black Caribbeans and higher in South Asians when compared with white Europeans. Ethnic differences in lipid concentrations may play a part in these differences. OBJECTIVE: The objective was to investigate blood lipid and dietary patterns in UK children from different ethnic groups. DESIGN: This was a cross-sectional study in 2026 UK children (including 285 black Africans, 188 black Caribbeans, 534 South Asians, and 512 white Europeans) attending primary schools in London, Birmingham, and Leicester. We measured fasting blood lipid concentrations and collected 24-h dietary recalls. RESULTS: In comparison with white Europeans, black African children had lower total cholesterol (-0.14 mmol/L; 95% CI: -0.25, -0.04 mmol/L), LDL-cholesterol (-0.10 mmol/L; 95% CI: -0.20, -0.01 mmol/L), and triglyceride concentrations (proportional difference: -0.11 mmol/L; 95% CI: -0.16, -0.06 mmol/L); HDL-cholesterol concentrations were similar. Lower saturated fat intakes (-1.4%; 95% CI: -1.9%, -0.9%) explained the differences between total and LDL cholesterol. Black Caribbean children had total, LDL-cholesterol, HDL-cholesterol, and triglyceride concentrations similar to those for white Europeans, with slightly lower saturated fat intakes. South Asian children had total and LDL-cholesterol concentrations similar to those for white Europeans, lower HDL-cholesterol concentrations (-0.7 mmol/L; 95% CI: -0.11, -0.03 mmol/L), and elevated triglyceride concentrations (proportional difference: 0.14 mmol/L; 95% CI: 0.09, 0.20 mmol/L); higher polyunsaturated and monounsaturated fat intakes did not explain these lipid differences. CONCLUSIONS: Only black African children had a blood lipid profile and associated dietary pattern likely to protect against future IHD. The loss of historically lower LDL-cholesterol concentrations among UK black Caribbeans and South Asians may have important adverse consequences for future IHD risk in these groups

    Exploring the use of adjusted body mass index thresholds based on equivalent insulin resistance for defining overweight and obesity in UK South Asian children

    Get PDF
    Background Body mass index (BMI) overweight/obesity thresholds in South Asian (SA) adults, at equivalent type-2 diabetes risk are lower than for white Europeans (WE). We aimed to define adjusted overweight/obesity thresholds for UK–SA children based on equivalent insulin resistance (HOMA-IR) to WE children. Methods In 1138 WE and 1292 SA children aged 9.0–10.9 years, multi-level regression models quantified associations between BMI and HOMA-IR by ethnic group. HOMA-IR levels for WE children were calculated at established overweight/obesity thresholds (at 9.5 years and 10.5 years), based on UK90 BMI cut-offs. Quantified associations in SA children were then used to estimate adjusted SA weight-status thresholds at the calculated HOMA-IR levels. Results At 9.5 years, current WE BMI overweight and obesity thresholds were 19.2 kg/m2, 21.3 kg/m2 (boys) and 20.0 kg/m2, 22.5 kg/m2 (girls). At equivalent HOMA-IR, SA overweight and obesity thresholds were lower by 2.9 kg/m2 (95% CI: 2.5–3.3 kg/m2) and 3.2 kg/m2 (95% CI: 2.7–3.6 kg/m2) in boys and 3.0 kg/m2 (95% CI: 2.6–3.4 kg/m2) and 3.3 kg/m2 (95% CI: 2.8–3.8 kg/m2) in girls, respectively. At these lower thresholds, overweight/obesity prevalences in SA children were approximately doubled (boys: 61%, girls: 56%). Patterns at 10.5 years were similar. Conclusions SA adjusted overweight/obesity thresholds based on equivalent IR were markedly lower than BMI thresholds for WE children, and defined more than half of SA children as overweight/obese
    corecore