54 research outputs found

    Effects of site dilution on the magnetic properties of geometrically frustrated antiferromagnets

    Full text link
    The effect of site dilution by non magnetic impurities on the susceptibility of geometrically frustrated antiferromagnets (kagome and pyrochlore lattices) is discussed in the framework of the Generalized Constant Coupling model, for both classical and quantum Heisenberg spins. For the classical diluted pyrochlore lattice, excellent agreement is found when compared with Monte Carlo data. Results for the quantum case are also presented and discussed.Comment: 5 pages, 3 figure

    Novel Light Coupling Systems Devised Using a Harmony Search Algorithm Approach

    Get PDF
    We report a critical assessment of the use of an Inverse Design (ID) approach steamed by an improved Harmony Search (IHS) algorithm for enhancing light coupling to densely integrated photonic integratic circuits (PICs) using novel grating structures. Grating couplers, performing as a very attractive vertical coupling scheme for standard silicon nano waveguides are nowadays a custom component in almost every PIC. Nevertheless, their efficiency can be highly enhanced by using our ID methodology that can deal simultaneously with many physical and geometrical parameters. Moreover, this method paves the way for designing more sophisticated non-uniform gratings, which not only match the coupling efficiency of conventional periodic corrugated waveguides, but also allow to devise more complex components such as wavelength or polarization splitters, just to cite some

    Upconversion cooling of Er-doped low-phonon fluorescent solids

    Full text link
    We report on a novel mechanism for laser cooling of fluorescent solids based on infrared-to-visible upconversion often found in rare-earth-doped low-phonon materials. This type of optical cooling presents some advantages with regards to conventional anti-Stokes cooling. Among them, it allows to obtain cooling in a broader range of frequencies around the barycenter of the infrared emitting band.Comment: 4 pages, 1 figur

    Critical behavior of 2 and 3 dimensional ferro- and antiferromagnetic spin ice systems in the framework of the Effective Field Renormalization Group technique

    Full text link
    In this work we generalize and subsequently apply the Effective Field Renormalization Group technique to the problem of ferro- and antiferromagnetically coupled Ising spins with local anisotropy axes in geometrically frustrated geometries (kagome and pyrochlore lattices). In this framework, we calculate the various ground states of these systems and the corresponding critical points. Excellent agreement is found with exact and Monte Carlo results. The effects of frustration are discussed. As pointed out by other authors, it turns out that the spin ice model can be exactly mapped to the standard Ising model but with effective interactions of the opposite sign to those in the original Hamiltonian. Therefore, the ferromagnetic spin ice is frustrated, and does not order. Antiferromagnetic spin ice (in both 2 and 3 dimensions), is found to undergo a transition to a long range ordered state. The thermal and magnetic critical exponents for this transition are calculated. It is found that the thermal exponent is that of the Ising universality class, whereas the magnetic critical exponent is different, as expected from the fact that the Zeeman term has a different symmetry in these systems. In addition, the recently introduced Generalized Constant Coupling method is also applied to the calculation of the critical points and ground state configurations. Again, a very good agreement is found with both exact, Monte Carlo, and renormalization group calculations for the critical points. Incidentally, we show that the generalized constant coupling approach can be regarded as the lowest order limit of the EFRG technique, in which correlations outside a frustrated unit are neglected, and scaling is substituted by strict equality of the thermodynamic quantities.Comment: 28 pages, 9 figures, RevTeX 4 Some minor changes in the conclussions. One reference adde

    Anti-Stokes laser cooling in bulk Erbium-doped materials

    Full text link
    We report the first observation of anti-Stokes laser-induced cooling in the Er^{3+}:KPb_{2}Cl_{5} crystal and in the Er^{3+}:CNBZn (CdF_{2}-CdCl_{2}-NaF-BaF_{2}-BaCl_{2}-ZnF_{2}) glass. The internal cooling efficiencies have been calculated by using photothermal deflection spectroscopy. Thermal scans acquired with an infrared thermal camera proved the bulk cooling capability of the studied samples. Implications of these results are discussed.Comment: 4 pages, 4 figures. The figures enclosed with this submission are low quality ones. Versions of this paper with high quality figures are available upon reques
    corecore