26 research outputs found

    Rationing tests for drug-resistant tuberculosis - who are we prepared to miss?

    Get PDF
    BACKGROUND: Early identification of patients with drug-resistant tuberculosis (DR-TB) increases the likelihood of treatment success and interrupts transmission. Resource-constrained settings use risk profiling to ration the use of drug susceptibility testing (DST). Nevertheless, no studies have yet quantified how many patients with DR-TB this strategy will miss. METHODS: A total of 1,545 subjects, who presented to Lima health centres with possible TB symptoms, completed a clinic-epidemiological questionnaire and provided sputum samples for TB culture and DST. The proportion of drug resistance in this population was calculated and the data was analysed to demonstrate the effect of rationing tests to patients with multidrug-resistant TB (MDR-TB) risk factors on the number of tests needed and corresponding proportion of missed patients with DR-TB. RESULTS: Overall, 147/1,545 (9.5%) subjects had culture-positive TB, of which 32 (21.8%) had DR-TB (MDR, 13.6%; isoniazid mono-resistant, 7.5%; rifampicin mono-resistant, 0.7%). A total of 553 subjects (35.8%) reported one or more MDR-TB risk factors; of these, 506 (91.5%; 95% CI, 88.9-93.7%) did not have TB, 32/553 (5.8%; 95% CI, 3.4-8.1%) had drug-susceptible TB, and only 15/553 (2.7%; 95% CI, 1.5-4.4%) had DR-TB. Rationing DST to those with an MDR-TB risk factor would have missed more than half of the DR-TB population (17/32, 53.2%; 95% CI, 34.7-70.9). CONCLUSIONS: Rationing DST based on known MDR-TB risk factors misses an unacceptable proportion of patients with drug-resistance in settings with ongoing DR-TB transmission. Investment in diagnostic services to allow universal DST for people with presumptive TB should be a high priority

    The metabolic footprint of aging in mice

    Get PDF
    Aging is characterized by a general decline in cellular function, which ultimately will affect whole body homeostasis. Although DNA damage and oxidative stress all contribute to aging, metabolic dysfunction is a common hallmark of aging at least in invertebrates. Since a comprehensive overview of metabolic changes in otherwise healthy aging mammals is lacking, we here compared metabolic parameters of young and 2 year old mice. We systemically integrated in vivo phenotyping with gene expression, biochemical analysis, and metabolomics, thereby identifying a distinguishing metabolic footprint of aging. Among the affected pathways in both liver and muscle we found glucose and fatty acid metabolism, and redox homeostasis. These alterations translated in decreased long chain acylcarnitines and increased free fatty acid levels and a marked reduction in various amino acids in the plasma of aged mice. As such, these metabolites serve as biomarkers for aging and healthspan

    Molecular detection of rifampin and isoniazid resistance to guide chronic TB patient management in Burkina Faso

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Drug-resistant tuberculosis (DR-TB) is considered a real threat to the achievement of TB control. Testing of mycobacterial culture and testing of drug susceptibility (DST) capacity are limited in resource-poor countries, therefore inadequate treatment may occur, favouring resistance development. We evaluated the molecular assay GenoType<sup>® </sup>MTBDR<it>plus </it>(Hain Lifescience, Germany) in order to detect DR-TB directly in clinical specimens as a means of providing a more accurate management of chronic TB patients in Burkina Faso, a country with a high TB-HIV co-infection prevalence.</p> <p>Methods</p> <p>Samples were collected in Burkina Faso where culture and DST are not currently available, and where chronic cases are therefore classified and treated based on clinical evaluation and sputum-smear microscopy results. One hundred and eight chronic TB patients (sputum smear-positive, after completing a re-treatment regimen for pulmonary TB under directly observed therapy) were enrolled in the study from December 2006 to October 2008. Two early morning sputum samples were collected from each patient, immediately frozen, and shipped to Italy in dry ice. Samples were decontaminated, processed for smear microscopy and DNA extraction. Culture was attempted on MGIT960 (Becton Dickinson, Cockeysville, USA) and decontaminated specimens were analyzed for the presence of mutations conferring resistance to rifampin and isoniazid by the molecular assay GenoType<sup>® </sup>MTBDR<it>plus</it>.</p> <p>Results</p> <p>We obtained a valid molecular test result in 60/61 smear-positive and 47/47 smear-negative patients.</p> <p>Among 108 chronic TB cases we identified patients who (i) harboured rifampin- and isoniazid-susceptible strains (n 24), (ii) were negative for MTB complex DNA (n 24), and (iii) had non-tuberculous mycobacteria infections (n 13). The most represented mutation conferring rifampin-resistance was the D516V substitution in the hotspot region of the <it>rpoB </it>gene (43.8% of cases). Other mutations recognized were the H526D (15.6%), the H526Y (15.6%), and the S531L (9.4%).</p> <p>All isoniazid-resistant cases (n 36) identified by the molecular assay were carrying a S315T substitution in the <it>katG </it>gene. In 41.7% of cases, a mutation affecting the promoter region of the <it>inhA </it>gene was also detected.</p> <p>Conclusion</p> <p>The GenoType<sup>® </sup>MTBDR<it>plus </it>assay performed directly on sputum specimens improves the management of chronic TB cases allowing more appropriate anti-TB regimens.</p

    Reevaluation of the Critical Concentration for Drug Susceptibility Testing of Mycobacterium tuberculosis against Pyrazinamide Using Wild-Type MIC Distributions and pncA Gene Sequencing

    No full text
    Pyrazinamide (PZA) is a potent first-line agent for the treatment of tuberculosis (TB) with activity also against a significant part of drug-resistant Mycobacterium tuberculosis strains. Since PZA is active only at acid pH, testing for susceptibility to PZA is difficult and insufficiently reproducible. The recommended critical concentration for PZA susceptibility (MIC, 100 mg/liter) used in the Bactec systems (460 and MGIT 960) has not been critically evaluated against wild-type MIC distributions in clinical isolates of Mycobacterium tuberculosis. Using the Bactec MGIT 960 system, we determined the PZA MICs for 46 clinical M. tuberculosis isolates and compared the results to pncA sequencing and previously obtained Bactec 460 data. For consecutive clinical isolates (n = 15), the epidemiological wild-type cutoff (ECOFF) for PZA was 64 mg/liter (MIC distribution range, = 1,024 mg/liter. The discordances between pncA sequencing, susceptibility results in Bactec 460, and MIC determinations in Bactec MGIT 960 were mainly observed in strains with MICs close to or at the ECOFF. We conclude that in general, wild-type and resistant strains were clearly separated and correlated to pncA mutations, although some isolates with MICs close to the ECOFF cause reproducibility problems within and between methods. To solve this issue, we suggest that isolates with MICs of = 128 mg/liter be classified resistant

    Meropenem-Clavulanic Acid Has High In Vitro Activity against Multidrug-Resistant Mycobacterium tuberculosis

    Get PDF
    We investigated the activity of meropenem-clavulanic acid (MEM-CLA) against 68 Mycobacterium tuberculosis isolates. We included predominantly multi- and extensively drug-resistant tuberculosis (MDR/XDR-TB) isolates, since the activity of MEM-CLA for resistant isolates has previously not been studied extensively. Using Middlebrook 7H10 medium, all but four isolates showed an MIC distribution of 0.125 to 2 mg/liter for MEM-CLA, below the non-species-related breakpoint for MEM of 2 mg/liter defined by EUCAST. MEM-CLA is a potential treatment option for MDR/XDR-TB.Funding Agencies|Swedish Society of Medicine [SLS 169241]; Marianne and Marcus Wallenberg Foundation; Swedish Heart and Lung Foundation (Oscar II Jubilee Foundation); Swedish Society of Antimicrobial Chemotherapy; Research Council of Southeast Sweden (FORSS)</p

    Proficiency of drug susceptibility testing of Mycobacterium tuberculosis against pyrazinamide: the Swedish experience

    No full text
    BACKGROUND: Pyrazinamide (PZA) is a key drug in the treatment of tuberculosis (TB), including multidrug-resistant TB. Drug susceptibility testing (DST) of Mycobacterium tuberculosis against PZA is not included in the World Health Organization's yearly proficiency testing. There is an increasing need to establish quality control of PZA DST. OBJECTIVE: To evaluate the performance of PZA DST and to introduce a quality assurance system for the test in Sweden. METHOD: Panels with PZA-susceptible and -resistant isolates were used in three rounds of proficiency testing in all five Swedish clinical TB laboratories and our reference laboratory. All laboratories used the MGIT 960 system. Minimum inhibitory concentrations (MICs) were determined and the pncA gene was sequenced to further characterise the 52 panel strains. RESULTS: Good agreement was seen between the phenotypic PZA DST and pncA sequence data, and MIC determination confirmed high levels of resistance. However, in contrast to other drugs, for which correct proficiency test results were observed, specificity problems occurred for PZA DST in some laboratories. CONCLUSIONS: In Sweden, using panel testing, differences were seen in the proficiency of TB laboratories in correctly identifying PZA susceptibility. Improved results were noted in the third round; PZA has therefore been included in yearly proficiency testing

    Wild-type distributions of seven oral second-line drugs against Mycobacterium tuberculosis

    No full text
    OBJECTIVES: To determine wild-type minimum inhibitory concentration (MIC) distributions for Mycobacterium tuberculosis, as the background data for defining susceptibility breakpoints are limited. METHODS: We determined wild-type MIC distributions of M. tuberculosis using a 96-stick replicator in Middlebrook 7H10 (7H10) medium for ethionamide (ETH), prothionamide, thiacetazone, cycloserine, rifabutin (RFB), clofazimine and linezolid in consecutive susceptible clinical isolates (n = 78). RESULTS: Tentative epidemiological wild-type cut-offs (ECOFF) were determined for all investigated drugs where World Health Organization recommended critical concentrations for 7H10 are lacking, except for ETH. As the ECOFF was closely related to the non-wild-type strains for ETH and thiacetazone, the use of an intermediary (1) category in drug susceptibility testing could increase reproducibility. The cross-resistance between ETH and isoniazid was 21%. Applying 0.5 mg/l as a breakpoint for RFB classified two non-wild type and rpoB mutated isolates as susceptible for RFB and resistant against rifampicin. CONCLUSIONS: We propose that wild-type MIC distributions should be used as a tool to define clinical breakpoints against second-line drugs. This is increasingly important considering the rapid emergence of drug resistance

    A 24-well plate assay for simultaneous testing of first and second line drugs against Mycobacterium tuberculosis in a high endemic setting

    No full text
    Background: Early detection of drug resistance is one of the priorities of tuberculosis (TB) control programs as drug resistance is increasing. New molecular assays are only accessible for a minority of the second line drugs and their availability in high endemic settings is also hampered by high cost and logistic challenges. Therefore, we evaluated a previously developed method for drug susceptibility testing (DST) including both first- and second line anti-TB drugs for use in high endemic areas. Results: Baseline mycobacterial isolates from 78 consecutive pulmonary TB patients from Addis Ababa, Ethiopia who were culture positive for Mycobacterium tuberculosis at the end of a two-month directly observed treatment short course (DOTS) were included. The isolates were simultaneously tested for isoniazid, rifampicin, ethambutol, streptomycin, amikacin, kanamycin, capreomycin, ofloxacin, moxifloxacin, ethionamide and para-aminosalicylic acid susceptibility using the indirect proportion method adopted for 24-well agar plates containing Middlebrook 7H10 medium. Applying the 24-well plate assay, 43 (55.1%) isolates were resistant to one or more of the first line drugs tested (isoniazid, rifampicin and ethambutol). MDR-TB was identified in 20.5% of this selected group and there was a perfect correlation for rifampicin resistance with the results from the genotype MTBDRplus assay. All isolates were susceptible to aminoglycosides and fluoroquinolones in agreement with the genotype MTBDRsl assay. The only tested second line drug associated to resistance was ethionamide (14.1% resistant). The method was reproducible with stable results for internal controls (one multi-drug resistant (MDR) and one pan-susceptible strain (H37Rv) and DST results could be reported at two weeks. Conclusions: The 24-well plate method for simultaneous DST for first- and second line drugs was found to be reproducible and correlated well to molecular drug susceptibility tests. It is likely to be useful in high-endemic areas for surveillance as well as for the detection of second line drug resistance in targeted groups such as in those who fail empirical MDR treatment

    A 24-well plate assay for simultaneous testing of first and second line drugs against Mycobacterium tuberculosis in a high endemic setting

    Get PDF
    Background: Early detection of drug resistance is one of the priorities of tuberculosis (TB) control programs as drug resistance is increasing. New molecular assays are only accessible for a minority of the second line drugs and their availability in high endemic settings is also hampered by high cost and logistic challenges. Therefore, we evaluated a previously developed method for drug susceptibility testing (DST) including both first- and second line anti-TB drugs for use in high endemic areas. Results: Baseline mycobacterial isolates from 78 consecutive pulmonary TB patients from Addis Ababa, Ethiopia who were culture positive for Mycobacterium tuberculosis at the end of a two-month directly observed treatment short course (DOTS) were included. The isolates were simultaneously tested for isoniazid, rifampicin, ethambutol, streptomycin, amikacin, kanamycin, capreomycin, ofloxacin, moxifloxacin, ethionamide and para-aminosalicylic acid susceptibility using the indirect proportion method adopted for 24-well agar plates containing Middlebrook 7H10 medium. Applying the 24-well plate assay, 43 (55.1%) isolates were resistant to one or more of the first line drugs tested (isoniazid, rifampicin and ethambutol). MDR-TB was identified in 20.5% of this selected group and there was a perfect correlation for rifampicin resistance with the results from the genotype MTBDRplus assay. All isolates were susceptible to aminoglycosides and fluoroquinolones in agreement with the genotype MTBDRsl assay. The only tested second line drug associated to resistance was ethionamide (14.1% resistant). The method was reproducible with stable results for internal controls (one multi-drug resistant (MDR) and one pan-susceptible strain (H37Rv) and DST results could be reported at two weeks. Conclusions: The 24-well plate method for simultaneous DST for first- and second line drugs was found to be reproducible and correlated well to molecular drug susceptibility tests. It is likely to be useful in high-endemic areas for surveillance as well as for the detection of second line drug resistance in targeted groups such as in those who fail empirical MDR treatment
    corecore