63 research outputs found

    Flavedo and albedo of five citrus fruits from Southern Italy: physicochemical characteristics and enzyme-assisted extraction of phenolic compounds

    Get PDF
    Peels are major byproducts of the juice processing industry. Citrus peels are composed of two tissues, namely the flavedo (outer layer) and the albedo (inner layer). Here, flavedo and albedo were obtained from the peel of grapefruit cv. ‘Star ruby’, lemon cv. ‘Akragas’, and sweet orange cvs. ‘Tarocco’, ‘Sanguinello’ and ‘Moro’. Freeze dried flavedo and albedo were investigated for their functional properties, and subjected to enzyme-assisted extraction with pectinase and cellulase (concentration of 6 U g−1 DW) to extract the phenolic compounds. Albedo showed superior physicochemical characteristics than flavedo. Albedo from ‘Tarocco’ exhibited the maximum water holding capacity (10.9 ± 0.48 g/g). Grapefruit albedo revealed the highest water swelling (13.4 ± 2.62 mL/g) and oil binding (6.31 ± 2.62 g/g) capacities. As regards the enzyme-assisted extraction of phytochemicals, both enzymes enhanced the extraction of phenolics (p < 0.05) compared to the controls. In flavedo, pectinase and cellulase increased the recovery of phenolics by approx. 30%, whereas in albedo the yields were increased above 60%. Results from this investigation suggest that albedo might be used by the food industry as a novel raw material, due to its superior physicochemical properties. Moreover, results provide evidence that the enzyme-assisted extraction is advantageous to recover phenolics from the citrus peels

    Microsurgical reconstruction of the mandible in a patient with evans syndrome: a case report and review of the literature

    Get PDF
    In this report, we describe the first successful case of microvascular free tissue transfer in a patient with Evans Syndrome (ES), a rare form of idiopathic thrombocytopenic purpura (ITP) and associated autoimmune hemolytic anemia (AIHA). Microvascular surgery in the setting of ES is likely to have higher complication rates because of the increased risk of postoperative bleeding and free flap thrombosis. The case presented here opens up to the feasibility of microvascular reconstruction of patients with coagulation disorders like ES. Every effort should be made to control for hemolytic, thrombocytopenic, and thrombophilic states associated with ES. In the absence of evidence-based treatment guidelines for ES, personalized treatment protocols with high-dose corticosteroids, immunoglobulin, and postoperative anticoagulation regimen are highly recommended

    An investigation into the temporal reproducibility of Tryptophan metabolite networks among healthy adolescents

    Get PDF
    Tryptophan and its bioactive metabolites are associated with health conditions such as systemic inflammation, cardiometabolic diseases, and neurodegenerative disorders. There are dynamic interactions among metabolites of tryptophan. The interactions between metabolites, particularly those that are strong and temporally reproducible could be of pathophysiological relevance. Using a targeted metabolomics approach, the concentration levels of tryptophan and 18 of its metabolites across multiple pathways was quantified in 24-hours urine samples at 2 time-points, age 17 years (baseline) and 18 years (follow-up) from 132 (52% female) apparently healthy adolescent participants of the DOrtmund Nutritional and Anthropometric Longitudinally Designed (DONALD) Study. In sex-specific analyses, we applied 2 network approaches, the Gaussian graphical model and Bayesian network to (1) explore the network structure for both time-points, (2) retrieve strongly related metabolites, and (3) determine whether the strongly related metabolites were temporally reproducible. Independent of selected covariates, the 2 network approaches revealed 5 associations that were strong and temporally reproducible. These were novel relationships, between kynurenic acid and indole-3-acetic acid in females and between kynurenic acid and xanthurenic acid in males, as well as known relationships between kynurenine and 3-hydroxykynurenine, and between 3-hydroxykynurenine and 3-hydroxyanthranilic acid in females and between tryptophan and kynurenine in males. Overall, this epidemiological study using network-based approaches shed new light into tryptophan metabolism, particularly the interaction of host and microbial metabolites. The 5 observed relationships suggested the existence of a temporally stable pattern of tryptophan and 6 metabolites in healthy adolescent, which could be further investigated in search of fingerprints of specific physiological states. The metabolites in these relationships may represent a multi-biomarker panel that could be informative for health outcome

    Metabolites from the Euryhaline Ciliate Pseudokeronopsis erythrina

    Get PDF
    TThree new secondary metabolites (named erythrolactones A2, B2 and C2), that are characterized by a central 4‐hydroxy‐unsaturated ή lactone ring bearing an alkyl saturated chain at C(2) and a butyl‐benzenoid group at C(5), together with their respective sulfate esters (erythrolactones A1, B1 and C1), have been isolated from cell cultures of Pseudokeronopsis erythrina, clone TL‐1. The structures are assigned on the basis of extensive spectroscopic measurements (1D and 2D NMR, UV, IR and HR‐MALDI‐TOF). A plausible biogenetic route for their formation is also suggested. Cold‐shock treatment was performed in order to induce the discharge of the metabolites contained in pigment granules lying on the ciliary organelles of this microorganism. HPLC‐ESI‐MS analysis of this granule discharge reveals that erythrolactones A2–C2 are actually therein contained, strongly suggesting a possible role for these metabolites in the chemical defence strategy of P. erythrina

    The non-proteic extrusive secondary metabolites in ciliated protists

    Get PDF
    The non-proteic extrusive secondary metabolites in ciliated protists F. Buonanno1, A. Anesi2, G. Guella2, E. Marcantoni3, S. Giorgi3, C. Ortenzi1 1Laboratory of Protistology and Biology Education, University of Macerata, 62100 Macerata, Italy 2Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, 38050 Povo, Trento, Italy 3School of Sciences and Technologies, Section of Chemistry, University of Camerino, 62032 Camerino, Macerata, Italy Extrusomes are membrane-bound ejectable organelles widely distributed in protists. They are usually localized in the cell cortex and attached to the cell membrane, and they are able to discharge their contents to the outside of the cell in response to mechanical or chemical stimuli. Notably, cells that discharge their extrusomes remains intact and functional. The chemical nature of protists\u2019 extrusive compounds characterized to date is extremely variable, including proteins, carbohydrates, lipids, and dozens of additional classes of secondary metabolites. However an increasing set of data are now available for particular group of protists, the ciliated protozoa. Many of non-proteic extrusive secondary metabolites in ciliates function for chemical offense or defense in prey-predator interactions against unicellular or/and multicellular organisms. It is worthy of note that at least some of these secondary metabolites have been demonstrated to show antibiotic, anti-cancer and pro-apoptotic properties in addition to their physiological functions. Among these compounds, euplotin C produced by the ciliate Euplotes crassus, and climacostol produced by Climacostomum virens, have been shown to activate programmed cell death by impairing mitochondrial membrane potential and inducing ROS generation in mammalian tumor cell lines. Interestingly, an antimicrobial activity against Gram-positive bacteria and fungal pathogens was also demonstrated for climacostol. Overall, in addition to the understanding of their physiological and ecological functions, the study of non-proteic secondary metabolites of ciliated protozoa may set the basis for the development of a novel series of antitumor and antimicrobial agents

    Natural Products among Brown Algae: The Case of Cystoseira schiffneri HAMEL (Sargassaceae, Phaeophyceae)

    Get PDF
    A chemotaxonomic study on the marine brown alga Cystoseira schiffneri collected from the Tunisian marine coast allowed us to identify kjellmanianone (1) and a new isololiolide derivative named schiffnerilolide (2). The structu re elucidati on and the assignment of relative con ïŹgurations of the isolated natur al products were based on advanced mass spectrometric and nuclear magnetic resonance techniques. This outcome suggested a close phylogenetic relationship of C. schiffneri with brown algae bel onging to genus Sargassum C. A GARDH. Molecular characterization using the nuclear small subunit rRNA (SSU rRNA) gene (18S) sequence as genetic marker was made. Pigme nt analysis showed a signiïŹcant seasonal change of carotenoids, in particular of fucoxanthin and fucoxanthinol. Also galactolipids, the main constituents of the thylakoid membranes, showed remarkable seasonal changes

    Quantification of Urinary Phenyl-Îł-Valerolactones and Related Valeric Acids in Human Urine on Consumption of Apples

    Get PDF
    Flavan-3-ols are dietary bioactive molecules that have beneficial effects on human health and reduce the risk of various diseases. Monomeric flavan-3-ols are rapidly absorbed in the small intestine and released in the blood stream as phase II conjugates. Polymeric flavan-3-ols are extensively metabolized by colonic gut microbiota into phenyl-Îł-valerolactones and their related phenylvaleric acids. These molecules are the main circulating metabolites in humans after the ingestion of flavan-3-ol rich-products; nevertheless, they have received less attention and their role is not understood yet. Here, we describe the quantification of 8 phenyl-Îł-valerolactones and 3 phenylvaleric acids in the urine of 11 subjects on consumption of apples by using UHPLC-ESI-Triple Quad-MS with pure reference compounds. Phenyl-Îł-valerolactones, mainly as sulfate and glucuronic acid conjugates, reached maximum excretion between 6 and 12 after apple consumption, with a decline thereafter. Significant differences were detected in the cumulative excretion rates within subjects and in the ratio of dihydroxyphenyl-Îł-valerolactone sulfate to glucuronide conjugates. This work observed for the first time the presence of two distinct metabotypes with regards to the excretion of phenyl-Îł-valerolactone phase II conjugates

    Metabolomic workflow for the accurate and high-throughput exploration of the pathways of tryptophan, tyrosine, phenylalanine, and branched-chain amino acids in human biofluids

    Get PDF
    10openInternationalInternational coauthor/editorThe modulation of host and dietary metabolites by gut microbiota (GM) is important for maintaining correct host physiology and in the onset of various pathologies. An ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry method was developed for the targeted quantitation in human plasma, serum, and urine of 89 metabolites resulting from human-GM cometabolism of dietary essential amino acids tryptophan, tyrosine, and phenylalanine as well as branched-chain amino acids. Ninety-six-well plate hybrid-SPE enables fast clean-up of plasma and serum. Urine was diluted and filtered. A 15 min cycle enabled the acquisition of 96 samples per day, with most of the metabolites stable in aqueous solution for up to 72 h. Calibration curves were specifically optimized to cover expected concentrations in biological fluids, and limits of detection were at the order of ppb. Matrix effects were in acceptable ranges, and analytical recoveries were in general greater than 80%. Inter and intraday precision and accuracy were satisfactory. We demonstrated its application in plasma and urine samples obtained from the same individual in the frame of an interventional study, allowing the quantitation of 51 metabolites. The method could be considered the reference for deciphering changes in human-gut microbial cometabolism in health and disease. Data are available via Metabolights with the identifier MTBLS4399.openAnesi, Andrea; Berding, Kirsten; Clarke, Gerard; Stanton, Catherine; Cryan, John F.; Caplice, Noel; Ross, R. Paul; Doolan, Andrea; Vrhovsek, Urska; Mattivi, FulvioAnesi, A.; Berding, K.; Clarke, G.; Stanton, C.; Cryan, J.F.; Caplice, N.; Ross, R.P.; Doolan, A.; Vrhovsek, U.; Mattivi, F

    An untargeted lipidomic analysis reveals depletion of several phospholipid classes in patients with familial hypercholesterolemia on treatment with Evolocumab

    Get PDF
    Familial hypercholesterolemia (FH) is caused by mutations in genes involved in low-density lipoprotein cholesterol (LDL-C) metabolism, including those for pro-protein convertase subtilisin/kexin type 9 (PCSK-9). The effect of PCSK-9 inhibition on the plasma lipidome has been poorly explored. Objective: Using an ultra-high-performance liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry method, the plasma lipidome of FH subjects before and at different time intervals during treatment with the PCSK-9 inhibitor Evolocumab was explored. Methods and Results: In 25 FH subjects, heterozygotes or compound heterozygotes for different LDL receptor mutations, untargeted lipidomic revealed significant reductions in 26 lipid classes belonging to phosphatidylcholine (PC), sphingomyelin (SM), ceramide (CER), cholesteryl ester (CE), triacylglycerol (TG) and phosphatidylinositol (PI). Lipid changes were graded between baseline and 4- and 12-week treatment. At 12-week treatment, five polyunsaturated diacyl PC, accounting for 38.6 to 49.2% of total PC at baseline; two ether/vinyl ether forms; seven SM; five CER and glucosyl/galactosyl-ceramide (HEX-CER) were reduced, as was the unsaturation index of HEX-CER and lactosyl—CER (LAC-CER). Although non quantitative modifications were observed in phosphatidylethanolamine (PE) during treatment with Evolocumab, shorter and more saturated fatty acyl chains were documented. Conclusions: Depletion of several phospholipid classes occurs in plasma of FH patients during treatment with the PCSK-9 inhibitor Evolocumab. The mechanism underlying these changes likely involves the de novo synthesis of SM and CER through the activation of the key enzyme sphingomyelin synthase by oxidized LDL and argues for a multifaceted system leading to vascular improvement in users of PCSK-9 inhibitor

    Cyanidin 3-glucoside targets a hepatic bilirubin transporter in rats

    Get PDF
    One of the organ-specific functions of the liver is the excretion of bilirubin into the bile. Membrane transport of bilirubin from the blood to the liver is not only an orphan function, because there is no link to the protein/gene units that perform this function, but also a poorly characterised function. The aim of this study was to investigate the pharmacology of bilirubin uptake in the liver of the female Wistar rat to improve basic knowledge in this neglected area of liver physiology. We treated isolated perfused livers of female rats with repeated single-pass, albumin-free bilirubin boli. We monitored both bilirubin and bilirubin glucuronide in perfusion effluent with a bio-fluorometric assay. We tested the ability of nine molecules known as substrates or inhibitors of sinusoidal membrane transporters to inhibit hepatic uptake of bilirubin. We found that cyanidin 3-glucoside and malvidin 3-glucoside were the only molecules that inhibited bilirubin uptake. These dietary anthocyanins resemble bro-mosulfophthalein (BSP), a substrate of several sinusoidal membrane transporters. The SLCO-specific substrates estradiol-17 beta-glucuronide, pravastatin, and taurocholate inhibited only bilirubin glucuronide uptake. Cya-nidin 3-glucoside and taurocholate acted at physiological concentrations. The SLC22-specific substrates indo-methacin and ketoprofen were inactive. We demonstrated the existence of a bilirubin-glucuronide transporter inhibited by bilirubin, a fact reported only once in the literature. The data suggest that bilirubin and bilirubin glucuronide are transported to the liver via pharmacologically distinct membrane transport pathways. Some dietary anthocyanins may physiologically modulate the uptake of bilirubin into the liver
    • 

    corecore