3,193 research outputs found
Epitranscriptomics in normal and malignant hematopoiesis
Epitranscriptomics analyze the biochemical modifications borne by RNA and their downstream influence. From this point of view, epitranscriptomics represent a new layer for the control of genetic information and can affect a variety of molecular processes including the cell cycle and the differentiation. In physiological conditions, hematopoiesis is a tightly regulated process that produces differentiated blood cells starting from hematopoietic stem cells. Alteration of this process can occur at different levels in the pathway that leads from the genetic information to the phenotypic manifestation producing malignant hematopoiesis. This review focuses on the role of epitranscriptomic events that are known to be implicated in normal and malignant hematopoiesis, opening a new pathophysiological and therapeutic scenario. Moreover, an evolutionary vision of this mechanism will be provided
Multi-GeV Electron Spectrometer
The advance in laser plasma acceleration techniques pushes the regime of the
resulting accelerated particles to higher energies and intensities. In
particular the upcoming experiments with the FLAME laser at LNF will enter the
GeV regime with almost 1pC of electrons. From the current status of
understanding of the acceleration mechanism, relatively large angular and
energy spreads are expected. There is therefore the need to develop a device
capable to measure the energy of electrons over three orders of magnitude (few
MeV to few GeV) under still unknown angular divergences. Within the PlasmonX
experiment at LNF a spectrometer is being constructed to perform these
measurements. It is made of an electro-magnet and a screen made of
scintillating fibers for the measurement of the trajectories of the particles.
The large range of operation, the huge number of particles and the need to
focus the divergence present unprecedented challenges in the design and
construction of such a device. We will present the design considerations for
this spectrometer and the first results from a prototype.Comment: 7 pages, 6 figures, submitted to NIM
Proton-proton elastic scattering at the LHC energy of {\surd} = 7 TeV
Proton-proton elastic scattering has been measured by the TOTEM experiment at
the CERN Large Hadron Collider at {\surd}s = 7 TeV in dedicated runs with the
Roman Pot detectors placed as close as seven times the transverse beam size
(sbeam) from the outgoing beams. After careful study of the accelerator optics
and the detector alignment, |t|, the square of four-momentum transferred in the
elastic scattering process, has been determined with an uncertainty of d t =
0.1GeV p|t|. In this letter, first results of the differential cross section
are presented covering a |t|-range from 0.36 to 2.5GeV2. The differential
cross-section in the range 0.36 < |t| < 0.47 GeV2 is described by an
exponential with a slope parameter B = (23.6{\pm}0.5stat {\pm}0.4syst)GeV-2,
followed by a significant diffractive minimum at |t| =
(0.53{\pm}0.01stat{\pm}0.01syst)GeV2. For |t|-values larger than ~ 1.5GeV2, the
cross-section exhibits a power law behaviour with an exponent of -7.8_\pm}
0.3stat{\pm}0.1syst. When compared to predictions based on the different
available models, the data show a strong discriminative power despite the small
t-range covered.Comment: 12pages, 5 figures, CERN preprin
Nanopore sequencing approach for immunoglobulin gene analysis in chronic lymphocytic leukemia
The evaluation of the somatic hypermutation of the clonotypic immunoglobulin heavy variable gene has become essential in the therapeutic management in chronic lymphocytic leukemia patients. European Research Initiative on Chronic Lymphocytic Leukemia promotes good practices and standardized approaches to this assay but often they are labor-intensive, technically complex, with limited in scalability. The use of next-generation sequencing in this analysis has been widely tested, showing comparable accuracy and distinct advantages. However, the adoption of the next generation sequencing requires a high sample number (run batching) to be economically convenient, which could lead to a longer turnaround time. Here we present data from nanopore sequencing for the somatic hypermutation evaluation compared to the standard method. Our results show that nanopore sequencing is suitable for immunoglobulin heavy variable gene mutational analysis in terms of sensitivity, accuracy, simplicity of analysis and is less time-consuming. Moreover, our work showed that the development of an appropriate data analysis pipeline could lower the nanopore sequencing error rate attitude
IRF4 expression is low in Philadelphia negative myeloproliferative neoplasms and is associated with a worse prognosis
Interferon regulatory factor 4 (IRF4) is involved in the pathogenesis of various hematologic malignancies. Its expression has been related to the negative regulation of myeloid-derived suppressor cells (MDSCs) and the polarization of anti-inflammatory M2 macrophages, thereby altering immunosurveillance and inflammatory mechanisms. An abnormal inflammatory status in the bone marrow microenvironment of myeloproliferative neoplasms (MPNs) has recently been demonstrated; moreover, in chronic myeloid leukemia a downregulated expression of IRF4 has been found. In this context, we evaluated the IRF4 expression in 119 newly diagnosed consecutive Philadelphia negative MPNs (Ph- MPNs), showing a low expression among the MPNs phenotypes with a more significant decrease in primary myelofibrosis patients. Lower IRF4 levels were associated with JAK2 + and triple negatives cases carrying the worst prognosis. Furthermore, the IRF4 levels were related to leukemic transformation and a shorter leukemia-free survival; moreover, the risk of myelofibrosis transformation in polycythemia vera and essential thrombocythemia patients was more frequent in cases with lower IRF4 levels. Overall, our study demonstrates an IRF4 dysregulated expression in MPNs patients and its association with a worse prognosis. Further studies could validate these data, to improve our knowledge of the MPNs pathogenesis and confirm the IRF4 role as a new prognostic factor
Measurement of the front-end dead-time of the LHCb muon detector and evaluation of its contribution to the muon detection inefficiency
A method is described which allows to deduce the dead-time of the front-end
electronics of the LHCb muon detector from a series of measurements performed
at different luminosities at a bunch-crossing rate of 20 MHz. The measured
values of the dead-time range from 70 ns to 100 ns. These results allow to
estimate the performance of the muon detector at the future bunch-crossing rate
of 40 MHz and at higher luminosity
Performance of ALICE pixel prototypes in high energy beams
The two innermost layers of the ALICE inner tracking system are instrumented
with silicon pixel detectors. Single chip assembly prototypes of the ALICE
pixels have been tested in high energy particle beams at the CERN SPS.
Detection efficiency and spatial precision have been studied as a function of
the threshold and the track incidence angle. The experimental method, data
analysis and main results are presented.Comment: 10 pages, 9 figures, contribution to PIX2005 Workshop, Bonn
(Germany), 5-8 September 200
Beam Test Performance and Simulation of Prototypes for the ALICE Silicon Pixel Detector
The silicon pixel detector (SPD) of the ALICE experiment in preparation at
the Large Hadron Collider (LHC) at CERN is designed to provide the precise
vertex reconstruction needed for measuring heavy flavor production in heavy ion
collisions at very high energies and high multiplicity. The SPD forms the
innermost part of the Inner Tracking System (ITS) which also includes silicon
drift and silicon strip detectors. Single assembly prototypes of the ALICE SPD
have been tested at the CERN SPS using high energy proton/pion beams in 2002
and 2003. We report on the experimental determination of the spatial precision.
We also report on the first combined beam test with prototypes of the other ITS
silicon detector technologies at the CERN SPS in November 2004. The issue of
SPD simulation is briefly discussed.Comment: 4 pages, 5 figures, prepared for proceedings of 7th International
Position Sensitive Detectors Conference, Liverpool, Sept. 200
Evaluation of a large set of patients with Autoimmune Polyglandular Syndrome from a single reference centre in context of different classifications
Purpose: To characterize patients with APS and to propose a new approach for their follow-up. Query ID="Q1" Text="Please check the given names and familynames." Methods: Monocentric observational retrospective study enrolling patients referred to the Outpatients clinic of the Units of Endocrinology, Diabetology, Gastroenterology, Rheumatology and Clinical Immunology of our Hospital for Autoimmune diseases. Results: Among 9852 patients, 1174 (11.9%) [869 (73.9%) female] were diagnosed with APS. In 254 subjects, the diagnosis was made at first clinical evaluation (Group 1), all the other patients were diagnosed with a mean latency of 11.3 ± 10.6 years (Group 2). Group 1 and 2 were comparable for age at diagnosis (35.7 ± 16.3 vs. 40.4 ± 16.6 yrs, p =.698), but different in male/female ratio (81/173 vs 226/696, p =.019). In Group 2, 50% of patients developed the syndrome within 8 years of follow-up. A significant difference was found after subdividing the first clinical manifestation into the different outpatient clinic to which they referred (8.7 ± 8.0 vs. 13.4 ± 11.6 vs. 19.8 ± 8.7 vs. 7.4 ± 8.1 for endocrine, diabetic, rheumatologic, and gastroenterological diseases, respectively, p <.001). Conclusions: We described a large series of patients affected by APS according to splitters and lumpers. We propose a flowchart tailored for each specialist outpatient clinic taking care of the patients. Finally, we recommend regular reproductive system assessment due to the non-negligible risk of developing premature ovarian failure
- …