15 research outputs found

    Cistus ladanifer as a source of phenolic compounds with antifungal activity

    Get PDF
    A screening of the antifungal potential of phenolic extract of Cistus ladanifer from Northeast Portugal, against Candida species was performed. The extract was characterized by HPLC-DAD-ESI/MS. Phenolic acids and derivatives, ellagic acid derivatives and flavonoids, such as catechins, flavonols and flavones, were found in the sample, The most abudant group was ellagic acid derivatives in which punicalagin gallate, a derivative of punicalagin attached to gallic acid, was found in highest amount. These compounds could be related to the strong inhibition of C. albicans, C. glabrata and C. parapsilosis growth. Moreover, the best antifungal activity was against C. glabrata, where the studied extract was able to cause at least 3 Log of reduction at concentrations below 50μg/mL and a total growth inhibition at concentrations above 625 μg/mL

    Wing geometric morphometrics and microsatellite analysis provide similar discrimination of honey bee subspecies

    Get PDF
    International audienceIdentification of honey bee (Apis mellifera) subspecies is important for their protection. It is also used by queen breeders to maintain some breeding lines. In this study, we compared three methods of subspecies identification based on the following: 17 microsatellite loci, COI-COII mitotypes and geometric morphometrics of forewing venation. The methods were used to classify colonies and workers from a mixed population of A. m. mellifera and A. m. carnica. There was highly significant correlation between results obtained using the three methods. More than three quarters of colonies were classified to the same subspecies by all three methods. The agreement was highest between microsatellites and morphometrics. More than 90 % of colonies were classified to the same subspecies by the two methods. There was also relatively high agreement (75 %) between microsatellites and morphometrics when workers were classified as pure subspecies or hybrids. In particular, one pure subspecies was never misclassified as other pure subspecies. The results presented here show that morphometrics can be used for detection of hybrids between A. m. mellifera and A. m. carnica

    Buzzing with Intelligence: Current Issues in Apiculture and the Role of Artificial Intelligence (AI) to Tackle It

    No full text
    Honeybees (Apis mellifera L.) are important for agriculture and ecosystems; however, they are threatened by the changing climate. In order to adapt and respond to emerging difficulties, beekeepers require the ability to continuously monitor their beehives. To carry out this, the utilization of advanced machine learning techniques proves to be an exceptional tool. This review provides a comprehensive analysis of the available research on the different applications of artificial intelligence (AI) in beekeeping that are relevant to climate change. Presented studies have shown that AI can be used in various scientific aspects of beekeeping and can work with several data types (e.g., sound, sensor readings, images) to investigate, model, predict, and help make decisions in apiaries. Research articles related to various aspects of apiculture, e.g., managing hives, maintaining their health, detecting pests and diseases, and climate and habitat management, were analyzed. It was found that several environmental, behavioral, and physical attributes needed to be monitored in real-time to be able to understand and fully predict the state of the hives. Finally, it could be concluded that even if there is not yet a full-scale monitoring method for apiculture, the already available approaches (even with their identified shortcomings) can help maintain sustainability in the changing apiculture

    Enantiomeric conservation of the male-produced sex pheromone facilitates monitoring of threatened European hermit beetles (Osmoderma spp.)

    Full text link
    Hermit beetles of the genus Osmoderma (Coleoptera: Scarabaeidae: Cetoniinae) are known for their fruity odour, which is released in large amounts by males. Two species of the genus occur in Europe, the eastern Osmoderma barnabita (Motschulsky) and the western Osmoderma eremita (Scopoli). Previous studies on Swedish populations of O. eremita showed that the compound responsible for the characteristic scent, γ-decalactone, functions as a sex pheromone for the attraction of conspecific females. Male O. eremita only release the (R)-enantiomer of the lactone, and both sexes are anosmic to the opposite enantiomer. As the distribution areas of the two hermit beetle species partly overlap, it may be expected that they use different enantiomeric compositions of γ-decalactone as pheromones to promote species discrimination. This paper reports on the identification of the sex pheromone of O. barnabita. Surprisingly, males from a Polish population produce only the (R)-enantiomer of γ-decalactone, and conspecific females show equal attraction to the (R)-enantiomer and a racemic mixture of the compound, indicating that O. barnabita is anosmic to the (S)-enantiomer, similarly to what was observed for O. eremita. A mtDNA sequence analysis of the cytochrome oxidase subunit I gene of Polish and Swedish beetles confirmed their taxonomical status as O. barnabita and O. eremita, respectively, with an average sequence divergence of 10.5% between beetles from the two studied areas. Although genetic data suggest that these species diverged several million years ago, they still rely on the same enantiomer of γ-decalactone for mate finding. Thus, the male-produced pheromone in Osmoderma spp. may be regarded as a territorial signal being exploited by females, rather than a cue for determining species identity. Our data show that the same compound can be used to facilitate monitoring of both beetle species, which are considered indicator species of the species-rich fauna of saproxylic insects in Europe. © 2009 The Netherlands Entomological Society

    Rural avenues as dispersal corridors for the vulnerable saproxylic beetle Elater ferrugineus in a fragmented agricultural landscape

    Get PDF
    Understanding factors that limit gene flow through the landscape is crucial for conservation of organisms living in fragmented habitats. We analysed patterns of gene flow in Elater ferrugineus, an endangered click beetle living in old-growth, hollow trees in a network of rural avenues surrounded by inhospitable arable land. Using amplified fragment length polymorphism (AFLP) data, we aimed to evaluate if the landscape features important for the beetle's development are also important for its dispersal. By dividing the sampling area into 30 x 30 m cells, with each cell categorised into one of four classes according to its putative permeability for dispersing beetles, and by correlating matrices of genetic and landscape resistance distances, we evaluated which of the landscape models had the best fit with the observed kinship structure. Significant correlations between genetic and Euclidean distances were detected, which indicated that restricted dispersal is the main constraint driving differentiation between populations of E. ferrugineus. Out of 81 landscape models in total, 54 models yielded significantly weaker correlation between matrices of pairwise kinship and effective distances than the null model. Regression analysis pointed to avenues as having the highest and positive impact on the concordance between matrices of kinship and landscape distances, while open arable land had the opposite effect. Our study thus shows that tree avenues can function as efficient dispersal corridors for E. ferrugineus, highlighting the importance of saving such avenues to increase the connectivity among suitable habitat patches, thereby reducing the risk of local extinctions of E. ferrugineus as well as other saproxylic organisms
    corecore