266 research outputs found

    Nanostructured Pr-Rich CexPr1-xO2-δ Mixed Oxides for Diesel Soot Combustion: Importance of Oxygen Lability

    Get PDF
    Soot combustion experiments with 5%O2/He were conducted using model soot, and four distinct compositions of CexPr1-xO2-δ oxides of varying nominal cerium compositions (x = 0, 0.2, 0.3, and 1) were prepared. The catalyst samples were comprehensively characterized using techniques such as XRD, Raman spectroscopy, HR-TEM, N2 adsorption at −196 °C, XPS, O2-TPD, H2-TPR, and work function measurements. The Pr-rich compositions, ranging from Ce0.3Pr0.7O2-δ to PrO2-δ, resulted in a significant increase in the total evolved O2 amounts and enhanced catalyst reducibility. However, a decrease in the textural properties of the catalysts was noted, which was particularly important for the pure praseodymia under the synthesis route conducted. The catalytic activity was investigated under the two following contact modes of mixing between soot and catalyst: loose and tight. The results revealed that the catalytic performance is associated with the surface contact in tight contact mode and with the combination of surface/subsurface/bulk oxygen mobility and the BET surface area in loose contact mode. Notably, the temperatures estimated at 10% and 50% of the conversion (T10 and T50) parameters were achieved at much lower temperatures than the uncatalyzed soot combustion, even under loose contact conditions. Specifically, the 50% conversion was achieved at 511 °C and 538 °C for Ce0.3Pr0.7O2 and Ce0.2Pr0.8O2, respectively. While no direct correlation between catalytic activity and work function was observed, a significant relationship emerges between work function values and the formation of oxygen vacancies, whatever the conditions used for these measurements. On the other hand, the ability to generate a high population of oxygen vacancies at low temperatures, rather than the direct activation of gas-phase O2, influences the catalytic performance of Pr-doped ceria catalysts, highlighting the importance of surface/subsurface oxygen vacancy generation, which was the parameter that showed a better correlation with the catalytic activity, whatever the soot conversion value or the mode of contact considered.This research was funded by the financial support of the Spanish Ministry of Science and Innovation/Research Spanish Agency (PID2019-105542RB-I00/AEI/10.13039/501100011033 project), UE-FEDER funding, and Generalitat Valenciana (CIPROM/2021/070 project). I.M. also acknowledges the Algerian Ministry of Higher Education and Scientific Research for the financial support provided through the national grant

    Influence of potassium and NO addition on catalytic activity in soot combustion and surface properties of iron and manganese spinels

    Get PDF
    Two series of (0–4 wt%) potassium doped oxide catalysts based on iron and manganese spinel were prepared. The synthesized materials were characterized in terms of their structure (XRD, Raman spectroscopy) and surface electronic properties (work function measurements). The catalytic activity towards soot combustion was determined by temperature programmed oxidation of a physical mixture of soot and catalyst in tight contact in gas oxygen mixtures with and without NO addition. For iron spinel based mate- rials, where potassium is localized at the surface, the cata- lytic activity correlates with the work function lowering upon K doping, while for manganese spinel based materials, where potassium is incorporated into the bulk (formation of KMn 4 O 8 or KMn 8 O 16 ), the correlation was not found. The presence of NO in the gas mixture leads to a systematic decrease of soot ignition temperature for all samples

    Role of electronic factor in soot oxidation process over tunnelled and layered potassium iron oxide catalysts

    Get PDF
    This paper describes the investigations of the catalytic activity in soot oxidation over well-defined iron oxide based materials. The nanostructuration of iron oxide by potassium into tunnelled (KFeO 2 ) and layered (K 2 Fe 22 O 34 ) ferrites and the surface promotion with CeO 2 results in the marked increase in the catalytic activity (decrease of the ignition temperature down to 210 ° C and T 10 % to 310 ° C). The measurements of the catalysts work function showed that both nanostructuration and surface promotion with ceria of the best KFeO 2 phase led to increase of the electron availability (decrease of the work function). Strong correlation of the catalytic activity in soot combustion of the Ce–K–Fe–O systems with the work function value was revealed for the first time in the model studies, and can be used as a guideline for optimisation of the real catalytic filters

    Atomic-level dispersion of bismuth over Co3O4Co_3O_4 nanocrystals : outstanding promotional effect in catalytic DeN2ODeN_2O

    Get PDF
    A series of cobalt spinel catalysts doped with bismuth in a broad range of 0–15.4 wt % was prepared by the co-precipitation method. The catalysts were thoroughly characterized by several physicochemical methods (X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), Raman spectroscopy (µRS), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption analyzed with Brunaer-Emmett-Teller theory (N2-BET), work function measurements (WF)), as well as aberration-corrected scanning transmission electron microscopy (STEM) coupled with energy-dispersive X-ray spectroscopy (EDX) and electron energy-loss spectroscopy (EELS). The optimal bismuth promoter content was found to be 6.6 wt %, which remarkably enhanced the performance of the cobalt spinel catalyst, shifting the N2O decomposition (deN2O) temperature window (T50%) down from approximately 400 °C (for Co3O4) to 240 °C (for the 6.6 wt % Bi-Co3O4 catalyst). The high-resolution STEM images revealed that the high activity of the 6.6 wt % Bi-Co3O4 catalyst can be associated with an even, atomic-level dispersion (3.5 at. nm−2) of bismuth over the surface of cobalt spinel nanocrystals. The improvement in catalytic activity was accompanied by an observed increase in the work function. We concluded that Bi promoted mostly the oxygen recombination step of a deN2O reaction, thus demonstrating for the first time the key role of the atomic-level dispersion of a surface promoter in deN2O reactions
    • …
    corecore