29 research outputs found

    Evidence for psi' regeneration in heavy ion collisions

    Get PDF
    The study of hidden charm production is an important part of the heavy ion program. The standard approach to this problem [1] assumes that c¯c bound states are created only at the initial stage of the reaction and then partially destroyed at later stages due to interactions with the medium [2, 3, 4]

    Comment to 'The Dependence of the anomalous J / psi suppression on the number of participant nucleons'

    Get PDF
    The recently published experimental dependence of the J/psi suppression pattern in Pb+Pb collisions at the CERN SPS on the energy of zero degree calorimeter EZDC are analyzed. It is found that the data obtained within the minimum bias analysis (using theoretical Drell-Yan ) are at variance with the previously published experimental dependence of the same quantity on the transversal energy of neutral hadrons ET . The discrepancy is related to the moderate centrality region: 100 << Np << 200 (Np is the number of nucleon participants). This could result from systematic experimental errors in the minimum bias sample. A possible source of the errors may be contamination of the minimum bias sample by o -target interactions. The data obtained within the standard analysis (using measured Drell-Yan multiplicity) are found to be much less sensitive to the contamination

    J / psi suppression and enhancement in Au + Au collisions at the BNL RHIC

    Get PDF
    We consider the production of the J/psi mesons in heavy ion collisions at RHIC energies in the statistical coalescence model with an exact (canonical ensemble) charm conservation. The cc quark pairs are assumed to be created in the primary hard parton collisions, but the formation of the open and hidden charm particles takes place at the hadronization stage and follows the prescription of statistical mechanics. The dependence of the J/psi production on both the number of nucleon participants and the collision energy is studied. The model predicts the J/psi suppression for low energies, whereas at the highest RHIC energy the model reveals the J/psi enhancement

    Statistical coalescence model with exact charm conservation

    Get PDF
    The statistical coalescence model for the production of open and hidden charm is considered within the canonical ensemble formulation. The data for the J/psi multiplicity in Pb+Pb collisions at 158 A·GeV are used for the model prediction of the open charm yield which has not yet been measured in these reactions
    corecore