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Abstract

We consider the production of the J/ψ mesons in heavy ion collisions at

RHIC energies in the statistical coalescence model with an exact (canonical

ensemble) charm conservation. The cc quark pairs are assumed to be created

in the primary hard parton collisions, but the formation of the open and

hidden charm particles takes place at the hadronization stage and follows the

prescription of statistical mechanics. The dependence of the J/ψ production

on both the number of nucleon participants and the collision energy is studied.

The model predicts the J/ψ suppression for low energies, whereas at the

highest RHIC energy the model reveals the J/ψ enhancement.
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The experimental program for studies of the charmonium production in nucleus–nucleus
(A+A) collisions at CERN SPS over the last 15 year was mainly motivated by a suggestion
of Matsui and Satz [1] to use the J/ψ as a probe of the state of matter in the early stage
of the collision. The original picture [1] (see also Ref. [2] for a modern review) assumes
that charmonia are produced in primary collisions of the nucleons from the colliding nuclei.
The number of created charmonium states is then reduced because of inelastic interactions
with the nucleons of the colliding nuclei. An additional suppression may occur due to J/ψ
interaction with the secondary hadrons (‘co-movers’) [3]. The probability to destroy the
charmonium state increases obviously with the number of nucleon participants Np. Similar
behavior is expected when the collision energy

√
s increases because the number of produced

hadrons (‘co-movers’) becomes larger. This is known as the normal J/ψ suppression. Fur-
thermore, the J/ψ (and other charmonia) are assumed to be formed mainly from the cc pairs
with invariant mass below the D-meson threshold [4]. The fraction of these subthreshold
pairs in the total number Ndir

cc of cc pairs (which is roughly proportional to the number of
produced open charm hadrons (D, D∗, Λc etc.) also decreases with

√
s. Therefore, the ratio

R(Np,
√
s) ≡ 〈J/ψ〉

Ndir
cc

(1)

is expected to decrease with increasing Np and/or
√
s. At large values of

√
s and Np the

formation of the quark-gluon plasma (QGP) is expected which is supposed to be signaled
by the anomalous suppression [2] of the J/ψ, i.e. a sudden and strong decrease of the ratio
(1) is considered as a signal of the QGP formation. Hence, a decrease of the ratio (1) is an
unambiguous consequence of the standard picture [2,3].

A very different approach of the statistical J/ψ production, proposed in Ref. [5], assumes
that J/ψ mesons are created at the hadronization stage similar to other (lighter) hadrons.

A picture of the J/ψ creation via c and c coalescence (recombination) was subsequently
developed within different model formulations [6–11]. Similar to the suggestion of Ref. [5],
charmonium states are assumed to be created at the hadronization stage of the reaction, but
they are formed due to the coalescence of c and c, which were produced by primary hard
parton collisions at the initial stage.

In this paper the Np and
√
s dependences of the ratio (1) will be studied for Au+Au col-

lisions at RHIC energies. We use the canonical ensemble (c.e.) formulation of the statistical
coalescence model (SCM) [8,11]. The number Ndir

cc of the produced cc pairs, which is the
input for the SCM calculations, will be estimated within the perturbative QCD (pQCD).
The considered pQCD+SCM approach reveals both the J/ψ suppression (at Ncc < 1) and
the J/ψ enhancement (at Ncc > 1) effects.

In the framework of the ideal hadron gas (HG) model in the grand canonical ensemble
(g.c.e.) formulation the hadron multiplicities are given by

Nj =
dj V

2π2

∫ ∞

0
k2dk



 exp





√

m2
j + k2 − µj

T



 ± 1





−1

, (2)
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where V and T correspond to the volume1 and temperature of the HG, mj and dj denote
particle masses and degeneracy factors. Eq.(2) describes the quantum HG: Bose and Fermi
distributions for mesons and (anti)baryons, respectively. Quantum effects, however, are
found to be noticeable for pions only, so that Eq.(2) for all other hadrons can be simplified
to the Boltzmann result:

Nj =
dj
2π2

V exp
(

µj
T

)

T m2
j K2

(

mj

T

)

, (3)

where K2 is the modified Bessel function.
In the case of complete chemical equilibrium the chemical potential µj in Eq.(2) is defined

as

µj = bjµB + qjµQ + sjµS + cjµC , (4)

where bj , qj, sj, cj denote the baryonic number, electric charge, strangeness and charm of
hadron j. The baryonic chemical potential regulates the non-zero (positive) baryonic density
of the HG system created in A+A collision. The chemical potentials µS and µC should
be found as the functions of T and µB from the requirements of zero value for the total
strangeness and charm in the system, and the chemical potential µQ from the requirement
of the fixed ratio of the electric charge to the baryonic number (this ratio is defined by the
numbers of protons and neutrons in the colliding nuclei).

The applications of the HG model to fitting the hadron abundances in particle and
nuclear collisions revealed, however, a deviation of strange hadron multiplicities from the
complete chemical equilibrium [15]. It was suggested that strange quarks and antiquarks are
distributed inside hadrons according to the laws of HG equilibrium, but the total number of
strange quarks and antiquarks inside the hadrons is smaller than that in the equilibrium HG
and remains approximately constant during the lifetime of the HG phase. Therefore, not only
the ”strange charge” Ns−Ns = 0 but also the ”total strangeness” Ns+Ns is then considered
as a conserved quantity. In the language of thermodynamics, it means an introduction of an
additional chemical potential, µ|S|, which regulates this new ”conserved” number Ns +Ns.

Then the additional term, (njs + njs)µ|S|, should appear in the expression (4) for µj , where

njs and njs are the numbers of strange quarks and antiquarks inside hadron j. Introducing a
notation, γs ≡ exp(µ|S|/T ) [15], one can implement this additional conservation according
to the following simple rule: the hadron multiplicities Nj (2) are multiplied by a factor

γ
(nj

s+nj

s
)

s , e.g. factor γs appears for K,K,Λ,Λ,Σ,Σ, factor γ2
s for Ξ,Ξ and factor γ3

s for Ω,Ω.
For mesons with hidden strangeness, like η, η′, ω, φ, having the wave function of the form

Cu|uu〉 + Cd|dd〉 + Cs|ss〉 (5)

1 To avoid complications we neglect the excluded volume corrections. The thermodynamical

consistent way to treat the excluded volume effects was suggested in Ref. [12] (see also [13] for

further details). If the excluded volume parameter is the same for all hadrons its effect is reduced

only to the rescaling of the volume V : all particle number ratios remain the same as in the ideal

hadron gas.
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the factor γ2|Cs|2

s is used.
From fitting the data on the hadron yield in particle and nuclear collisions it was found

that γs ≤ 1 for all known cases. Parameter γs is called therefore the strangeness suppression
factor.

Recently an analogous procedure was suggested for charm hadrons [7]. A new parameter
γc has been introduced to treat simultaneously both the open and hidden charm particles
within statistical mechanics HG formulation. The multiplicities Nj (2) of single open charm
and anticharm hadrons should be multiplied by the factor γc and charmonium states by the
factor γ2

c . In contrast to the suppression of strangeness in the HG (γs ≤ 1) one observes
the enhancement of charm hadron yields in comparison to their equilibrium HG values. It
means that γc ≥ 1 and this parameter is called the charm enhancement factor [7].

To take into account the requirement of zero ”charm charge” of the HG in the exact
form the c.e. formulation was suggested in Ref. [8]. In the c.e. formulation the charmonium
multiplicities are still given by Eq.(3) as charmonium states have zero charm charge. The
multiplicities (3) of the open charm hadrons will, however, be multiplied by the additional
‘canonical suppression’ factor (see e.g. [18]). This suppression factor is the same for all
individual single charm states. It leads to the total open charm multiplicity N ce

O in the c.e.:

N ce
O = NO

I1(NO)

I0(NO)
, (6)

whereNO is the total g.c.e. multiplicity of all charm and anticharm mesons and (anti)baryons
calculated with Eq.(3) and I0, I1 are the modified Bessel functions. For NO << 1 one has
I1(NO)/I0(NO) ≃ NO/2 and, therefore, the c.e. total open charm multiplicity is strongly
suppressed in comparison to the g.c.e. result. For NO >> 1 one finds I1(NO)/I0(NO) → 1
and therefore N ce

O → NO, i.e. the c.e. and the g.c.e results coincide. In high energy A+A
collisions the total number of strange and antistrange hadron is much larger than unity.
Hence the strangeness conservation can be considered in g.c.e. approach. The same is valid
for baryonic number and electric charge. This is, however, not the case for the charm. At
the SPS energies the c.e. suppression effects are always important: even in the most central
Pb+Pb collisions the total number of open charm hadrons is expected to be smaller than one.
It will be shown that the c.e. treatment of charm conservation remains crucially important
also at the RHIC energies for the studies of the Np dependence of the open charm and
charmonium production. Therefore, in what follows, the baryonic number, electric charge
and strangeness of the HG system are treated according to the g.c.e. but charm is considered
in the c.e. formulation where the exact ”charm charge” conservation is imposed.

Hence we formulate our model as follows. The charm quark-antiquark pairs are assumed
to be created at the early stage of A+A collisions. In the subsequent evolution of the system,
the number of this pairs remains approximately constant and is not necessary equal to its
equilibrium value. The deviation from the chemical equilibrium should be taken into account
by the charm enhancement factor γc. The distribution of created cc pairs among open and
hidden charm hadrons is regulated by statistical model according to Eq.(3) with account for
the canonical suppression (6). So the statistical coalescence model in the c.e. is formulated
as:

Ndir
cc =

1

2
γc NO

I1(γcNO)

I0(γcNO)
+ γ2

c NH , (7)
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where NH is the total multiplicities of hadrons with hidden charm. (Note that the second
term in the right-hand side of Eq.(7) gives only a tiny correction to the first term, i.e. most
of the directly created cc pairs are transformed into the open charm hadrons.) To find NO

and NH we use Eq.(3) for the individual hadron thermal multiplicities in the g.c.e. and take
the summation over all known particles and resonances [19] with open and hidden charm,
respectively2.

Provided that NO, NH and Ndir
cc are known, γc can be found from Eq.(7). The J/ψ

multiplicity is then given by

〈J/ψ〉 = γ2
c N

tot
J/ψ . (8)

where N tot
J/ψ is given by

N tot
J/ψ = NJ/ψ + Br(ψ′)Nψ′ + Br(χ1)Nχ1

+ Br(χ2)Nχ2
, (9)

NJ/ψ, Nψ′ , Nχ1
, Nχ2

are calculated according to Eq.(3) and Br(ψ′) ≃ 0.54, Br(χ1) ≃ 0.27,
Br(χ2) ≃ 0.14 are the decay branching ratios of the excited charmonium states into J/ψ.

Hence, to calculate the J/ψ multiplicity in SCM we need the following information:
1) the chemical freeze-out (or hadronization) parameters V, T, µB for A+A collisions at high
energies;
2) the number Ndir

cc of cc-pairs created in hard parton collisions at the early stage of A+A
reaction.

For the RHIC energies the chemical freeze-out temperature T is expected to be close to
that for the SPS energies: T = 175 ± 10 MeV. To fix the unknown volume parameter V
and baryonic chemical potential µB we use the parametrization of the total pion multiplicity
[20]:

〈π〉
Np

≃ C
(
√
s− 2mN)3/4

(
√
s)1/4

(10)

where C = 1.46 GeV−1/2 and mN is nucleon mass. For the RHIC energies the nucleon mass
in Eq.(10) can be neglected so that

〈π〉 ≃ C Np (
√
s)1/2. (11)

Eq.(10) is an agreement with both the SPS data and the preliminary RHIC data in Au+Au
collisions at

√
s = 56 GeV and

√
s = 130 GeV. The pion multiplicity (10) should be equated

to the total HG pion multiplicity N tot
π which includes the pions coming from the resonance

decays (similar to Eq.(9)). The HG parameters V and µB are found then as the solution of
the following coupled equations:

〈π〉 = N tot
π (V, T, µB) ≡ V ntotπ (T, µB) , (12)

Np = V nB(T, µB) , (13)

2Note that possible (very small) contributions of particles with double open charm are neglected

in Eq.(7).
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where nB is the HG baryonic density. In these calculations we fix the temperature pa-
rameter T . The baryonic chemical potential for Au+Au collisions at the RHIC energies is
small (µB < T ) and decreases with collision energy. Therefore, most of the thermal HG
multiplicities become close to their limiting values at µB → 0. Consequently most of hadron
ratios N tot

j /N tot
i become independent of the collision energy. The volume of the system is

approximately proportional to the number of pions:

V ∼ 〈π〉 ∼ Np(
√
s)1/2 . (14)

Note that T = 170 ÷ 180 MeV leads to the HG value of the thermal ratio:

〈ψ′〉
〈J/ψ〉 =

(

mψ′

mJ/ψ

)3/2

exp
(

− mψ′ −mJ/ψ

T

)

= 0.04 ÷ 0.05 , (15)

in agreement with data [16] in central (Np > 100) Pb+Pb collisions at the CERN SPS. This
fact was first noticed in Ref. [17]. At small Np as well as in p+p and p+A collisions the
measured value of the 〈ψ′〉/〈J/ψ〉 ratio is several times larger than its statistical mechanics
estimate (15). Our analysis of the SCM will be therefore restricted to A+B collisions with
Np > 100. We do not intend to describe the open and hidden charm production in p+p,
p+A and very peripheral A+B collisions within the SCM.

The number of directly produced cc pairs, Ndir
cc , in the left-hand side of Eq.(7) will be

estimated in the Glauber approach. For A + B collision at the impact parameter b, this
number is given by the formula:

Ndir
cc (b) = AB TAB(b) σ(NN → cc+X) , (16)

where σ(NN → cc + X) is the cross section of cc pair production in N + N collisions and
TAB(b) is the nuclear overlap function (see Appendix for details).

The cross section of cc pair production in N+N collisions can be calculated in the pQCD.
Such calculations (in the leading order of the pQCD) were first done in Ref. [22]. We
use the next-to-leading order result presented in Ref. [23]. This result was obtained with
GRV HO [24] structure functions, the c-quark mass and renormalization scale were fixed
at mc = µ = 1.3 GeV to fit the available experimental data. We parametrize the

√
s-

dependence of the cross section for
√
s = 20 ÷ 200 GeV as:

σ(pp→ cc) = σ0

(

1 − M0√
s

)α (√
s

M0

)β

, (17)

with σ0 ≈ 3.392 µb, M0 ≈ 2.984 GeV, α ≈ 8.185 and β ≈ 1.132. Note that free param-
eters of the pQCD calculations in Ref. [23] were fitted to the existing data, therefore, our
parametrization (17) is also in agreement with data on the total charm production in p+p
collisions.

The average number of participants (‘wounded nucleons’) in A+B collisions at impact
parameter b is given by [25]

Np(b) = A
∫ +∞

−∞
dx
∫ +∞

−∞
dy TA(

√

x2 + y2)

[

1 −
(

1 − σinelNNTB(
√

x2 + (y − b)2)
)B
]

+ B
∫ +∞

−∞
dx
∫ +∞

−∞
dy TB(

√

x2 + (y − b)2)

[

1 −
(

1 − σinelNNTA(
√

x2 + y2)
)A
]

, (18)
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where TA(~s) (TB(~s)) is the nuclear thickness function for the nucleus A (B) and σinelNN is the
total inelastic cross section of N+N interaction. To parametrize the

√
s-dependence of σinelNN

we made the assumption that in the energy range
√
s = 10÷ 200 GeV, it is proportional to

the total NN cross section σNN and use the standard fit for σNN [19]:

σinelNN ≈ 0.7σNN ≃ 0.7 (Xpps
ǫ + Y1pps

−η1 − Y2pps
−η2), (19)

where ǫ = 0.093, η1 = 0.358, η2 = 0.560, Xpp = 18.751, Y1pp = 63.58 and Y2pp = 35.46.
Eqs. (16) and (18) provide parametric dependence of the number of produced cc pairs

on the number of participating nucleons, Ndir
cc = Ndir

cc (Np), which is shown in Fig 1 for
Au+Au collisions. It is seen that the dependence is represented by a straight line in the
double-logarithmic scale, so that

Ndir
cc ∼ (Np)

k (20)

for Np > 50. We find that k = 1.31 ÷ 1.353. Using Eq.(17) one finds then the following
behavior of Ndir

cc at high energies:

Ndir
cc ∼ (Np)

k(
√
s)β . (21)

Now we are able to calculate the ratio R (1) in the SCM and study its dependence on
Np and

√
s. The dependence of R on the number of participants is shown in Fig.2. It is

seen that the ratio has qualitatively different behavior at different energies. At the lowest
RHIC energy

√
s = 56 GeV, the SCM predicts decreasing of the ratio with the number of

participants (J/ψ suppression). In contrast, at the highest RHIC energy
√
s = 200 GeV

the ratio increases with the number of participant (J/ψ enhancement) for Np > 100. Both
suppression (at Np < 150) and enhancement (at Np > 200) are seen at the intermediate
RHIC energy

√
s = 130 GeV.

Similarly, there are qualitatively different dependencies of R on the collision energy for
small (Np = 100) and for large (Np = 350) number of the participants. This can be seen in
Fig.3. Non-monotonic dependence of the ratio R on

√
s is expected at Np = 100 . At Np =

350, the ratio R increases monotonically with
√
s at all RHIC energies

√
s = 56÷ 200 GeV.

The minimum of R in this case corresponds to the energy region between the SPS and RHIC:√
s ≈ 30 GeV.
To understand the behavior of R it is instructive to study the limiting cases: Ndir

cc << 1
and Ndir

cc >> 1. Neglecting the hidden-charm term in Eq.(7) one finds for Ndir
cc << 1 :

Ndir
cc ≃ 1

4
γ2
c N

2
O , (22)

hence,

R ≡ 〈J/ψ〉
Ndir
cc

≃
N tot
J/ψ

N2
O/4

∼ 1

V
∼ N−1

p

(√
s
)−1/2

. (23)

3It is interesting to note that for the most central A+A collisions (Np ≈ 2A), Ndir
cc has approxi-

mately the same dependence on the atomic weight of the colliding nuclei: Ndir
cc ∼ A4/3 ∼ (Np)

4/3.
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Eq.(23) shows 1/V universal suppression of the ratio R. This ratio decreases as N−1
p and

(
√
s)

−0.5
with the increasing number of participants and collision energy, and the shape of

this J/ψ suppression is essentially independent of the functional dependence of Ndir
cc on Np

and
√
s.

If Ndir
cc >> 1 one finds from Eq.(7):

Ndir
cc ≃ 1

2
γc NO , (24)

so that γc ≃ 2Ndir
cc /NO ∼ Ndir

cc /V and, hence,

R ≡ 〈J/ψ〉
Ndir
cc

≃
γcN

tot
J/ψ

γcNO/2
∼ Ndir

cc

V
∼ Nk−1

p

(√
s
)β−1/2

. (25)

According to Eq.(25) the ratio R increases with both Np and
√
s. The J/ψ enhancement

takes place due to the fact that the number of primary nucleon-nucleon collisions grows faster
than the number of participants (Ndir

cc ∼ (Np)
k, k > 1) and because the pion multiplicity (and

therefore the volume of the system) is less sensitive to the collision energy (〈π〉 ∼ (
√
s)1/2)

than the number of cc pairs (Ndir
cc ∼ (

√
s)β, β > 1/2).

It is seen from Fig.1 that Ndir
cc << 1 at the lowest RHIC energy for small numbers

of participants, hence the SCM predicts the J/ψ suppression. In contrast, for the highest
RHIC energy and large Np the opposite limit Ndir

cc >> 1 is reached. This leads to the J/ψ
enhancement.

In conclusion, the production of the J/ψ mesons is studied in Au+Au collisions at
the RHIC energies in the statistical coalescence model with the exact charm conservation.
The cc quark pairs are assumed to be created in the primary hard parton collisions and
their number is estimated within the pQCD. At the hadronization stage the cc quarks are
distributed among the open charm and charmonium particles according to the hadron gas
statistical mechanics in the canonical ensemble formulation.

Decreasing of the 〈J/ψ〉 to Ndir
cc ratio with increasing the number of nucleon participants

Np is found at the lowest
√
s = 56 GeV RHIC energy. At fixed small number of partici-

pants (Np ≈ 100) the ratio decreases with
√
s between the lowest (

√
s = 56 GeV) and the

intermediate (
√
s = 130 GeV) RHIC energies. This is in a qualitative agreement with the

standard picture [1,2] of the J/ψ suppression. In contrast, a rise of the 〈J/ψ〉 to Ndir
cc ratio

with the collision energy is predicted for central Au+Au collisions. Moreover, at the highest
RHIC energy, the ratio is expected to grow with the number of participants, which is in a
drastic contradiction with the standard picture. The reason for this that in the standard
picture the hidden charm mesons are supposed to be created exclusively in the primary
(hard) nucleon-nucleon collisions. It is assumed that all other interaction can only destroy
them. Especially strong suppression of the charmonia is expected in the quark-gluon plasma
(’anomalous J/ψ suppression’). In distinction to this standard approach, the statistical co-
alescence model considers a possibility for the charmonium states to be formed from c and c
at the stage of the quark-gluon plasma hadronization. This possibility definitely cannot be
ignored, when the number of produced cc pairs per A+A collision becomes large: Ncc >> 1
(this happens for the central Au + Au collisions at the highest RHIC energy). In this case
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the c and c pairs initially produced in different hard collision processes can recombine into a
hidden charm meson. Therefore, an increase of the 〈J/ψ〉 to Ndir

cc ratio should be expected.
The hot quark gluon plasma is most probably formed at high RHIC energies and this

destroy all primarily produced charmonium states [26]. However, the hadronization of the
quark gluon plasma within the SCM reveals itself in the J/ψ enhancement rather than
suppression. Another interesting phenomena may also take place: when the number of cc
pairs becomes large, two c quarks (or two c) can combine with a light (anti)quark and form
a double charmed (anti)baryon. These baryons are predicted by the quark model but have
not been observed yet. We expect that double (and probably triple) charmed baryons may
be discovered in the Au+ Au collisions at RHIC [27].
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APPENDIX: NUCLEAR GEOMETRY

The spherically symmetrical distribution of the nucleons in the Au− 197 nucleus can be
parametrized by the two-parameter Fermi function [28] (this parametrization is also known
as Woods-Saxon distribution):

ρ(r) = ρ0

[

1 + exp
(

r − c

a

)]−1

(A1)

with c ≈ 6.38 fm, a ≈ 0.535 fm and ρ0 is given by the normalization condition:

4π
∫ ∞

0
drr2ρ(r) = 1. (A2)

The nuclear thickness distribution TA(b) is defined by the formula

TA(b) =
∫ ∞

−∞
dzρ

(√
b2 + z2

)

, (A3)

and the nuclear overlap function is defined as

TAB(b) =
∫ ∞

−∞
dx
∫ ∞

−∞
dyTA

(

√

x2 + y2

)

TB

(

√

x2 + (y − b)2

)

. (A4)

From Eq.(A2), one can deduce that the above functions satisfy the following normalization
conditions:

2π
∫ ∞

0
db b TA(b) = 1 , 2π

∫ ∞

0
db b TAB(b) = 1. (A5)
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FIG. 1. Ndir
cc versus Np for

√
s = 56, 130, 200 GeV.
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FIG. 2. 〈J/ψ〉/Ndir
cc versus Np for

√
s = 56, 130, 200 GeV. The vertical line shows the lower

bound of the applicability domain of the SCM.
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FIG. 3. 〈J/ψ〉/Ndir
cc versus

√
s for Np = 100 and 350.
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