28 research outputs found

    Corynebacterium diphtheriae Infection in Mahajanga, Madagascar: First Case Report

    No full text
    International audienceAbstract Diphtheria is an infection that has been unreported for more than two decades in Mahajanga. A child, aged 4, presented with a pseudomembranous pharyngitis was associated with a dysphagia. He was from a rural municipality of Ambato Boeny at Mahajanga province and was admitted to the Pediatric Unit of the University Hospital Center. The child was not immunized against diphtheria. A throat swab was performed and cultured, from which Corynebacterium diphtheriae was identified. The strain, of biovar Mitis, was confirmed as diphtheria toxin (DT)-gene positive and produced DT (Elek test). Unfortunately, the child developed cardiac and neurological complications and died of respiratory and heart failure

    Phenotypic and molecular characterisations of carbapenem-resistant Acinetobacter baumannii strains isolated in Madagascar

    No full text
    International audienceBackgroundThe present study aimed to perform a deep phenotypic and genotypic analysis of 15 clinical carbapenem-resistant Acinetobacter baumannii (CRAb) strains isolated in Madagascar between 2008 and 2016 from diverse sources.MethodsCRAb isolates collected from the Clinical Biology Centre of the Institut Pasteur of Madagascar, from the neonatal unit of Antananarivo military hospital, and from intensive care units of Mahajanga Androva and Antananarivo Joseph Ravoahangy Andrianavalona (HJRA) hospitals were subjected to susceptibility testing. Whole-genome sequencing allowed us to assess the presence of antibiotic-resistance determinants, insertion sequences, integrons, genomic islands and potential virulence factors in all strains. The structure of the carO porin gene and deduced protein (CarO) were also assessed in CRAb isolates.ResultsAll isolates were found to be multidrug-resistant strains. Antibiotic-resistance genes against six classes of antimicrobial agents were described. The four carbapenem-resistance genes: blaOXA-51 like, blaOXA-23, blaOXA-24, and blaOXA-58 genes were detected in 100, 53.3, 13.3, and 6.6% of the isolates, respectively. Additionally, an ISAba1 located upstream of blaOXA-23 and blaADC-like genes was observed in 53.3 and 66.7% of isolates, respectively. Further, Tn2006 and Tn2008 were found associated to the ISAba1-blaOXA-23 structure. An 8051-bp mobilizable plasmid harbouring the blaOXA-24 gene was isolated in two strains. In addition, 46.7% of isolates were positive for class 1 integrons. Overall, five sequences types (STs), with predominantly ST2, were detected. Several virulence genes were found in the CRAb isolates, among which two genes, epsA and ptk, responsible for the capsule-positive phenotype, were involved in A. baumannii pathogenesis.ConclusionsThis study revealed the presence of high-level carbapenem resistance in A. baumannii with the first description of OXA-24 and OXA-58 carbapenemases in Madagascar. This highlights the importance of better monitoring and controlling CRAb in Madagascan hospitals to avoid their spread

    Transmission Routes of Extended-Spectrum Beta-Lactamase–Producing Enterobacteriaceae in a Neonatology Ward in Madagascar

    No full text
    International audienceThe diffusion of extended-spectrum beta-lactamase (E-ESBL)–producing Enterobacteriaceae is a major concern worldwide, especially in low-income countries, where they may lead to therapeutic failures. In hospitals, where colonization is the highest, E-ESBL transmission is poorly understood, limiting the possibility of establishing effective control measures. We assessed E-ESBL–acquisition routes in a neonatalogy ward in Madagascar. Individuals from a neonatology ward were longitudinally followed-up (August 2014–March 2015). Newborns’ family members’ and health-care workers (HCWs) were stool-sampled and tested for E-ESBL colonization weekly. Several hypothetical acquisition routes of newborns—e.g. direct contact with family members and HCWs and indirect contact with other newborns through environmental contamination, colonization pressure, or transient hand carriage—were examined and compared using mathematical modeling and Bayesian inference. In our results, high E-ESBL acquisition rates were found, reaching > 70% for newborns, > 55% for family members, and > 75% for HCWs. Modeling analyses indicated transmission sources for newborn colonization to be species dependent. Health-care workers’ route were selected for Klebsiella pneumoniae and Escherichia coli, with respective estimated transmission strengths of 0.05 (0.008; 0.14) and 0.008 (0.001; 0.021) ind−1 day−1. Indirect transmissions associated with ward prevalence, e.g. through hand carriage or environment, were selected for Enterobacter cloacae, E. coli, and K. pneumoniae (range 0.27–0.41 ind−1 day−1). Importantly, family members were not identified as transmission source. To conclude, E-ESBL acquisition sources are strongly species dependent. Escherichia coli and E. cloacae involve more indirect contamination, whereas K. pneumoniae also spreads through contact with colonized HCWs. These findings should help improve control measures to reduce in-hospital transmission

    Transmission Routes of Extended-Spectrum Beta-Lactamase–Producing Enterobacteriaceae in a Neonatology Ward in Madagascar

    No full text
    International audienceThe diffusion of extended-spectrum beta-lactamase (E-ESBL)–producing Enterobacteriaceae is a major concern worldwide, especially in low-income countries, where they may lead to therapeutic failures. In hospitals, where colonization is the highest, E-ESBL transmission is poorly understood, limiting the possibility of establishing effective control measures. We assessed E-ESBL–acquisition routes in a neonatalogy ward in Madagascar. Individuals from a neonatology ward were longitudinally followed-up (August 2014–March 2015). Newborns’ family members’ and health-care workers (HCWs) were stool-sampled and tested for E-ESBL colonization weekly. Several hypothetical acquisition routes of newborns—e.g. direct contact with family members and HCWs and indirect contact with other newborns through environmental contamination, colonization pressure, or transient hand carriage—were examined and compared using mathematical modeling and Bayesian inference. In our results, high E-ESBL acquisition rates were found, reaching > 70% for newborns, > 55% for family members, and > 75% for HCWs. Modeling analyses indicated transmission sources for newborn colonization to be species dependent. Health-care workers’ route were selected for Klebsiella pneumoniae and Escherichia coli, with respective estimated transmission strengths of 0.05 (0.008; 0.14) and 0.008 (0.001; 0.021) ind−1 day−1. Indirect transmissions associated with ward prevalence, e.g. through hand carriage or environment, were selected for Enterobacter cloacae, E. coli, and K. pneumoniae (range 0.27–0.41 ind−1 day−1). Importantly, family members were not identified as transmission source. To conclude, E-ESBL acquisition sources are strongly species dependent. Escherichia coli and E. cloacae involve more indirect contamination, whereas K. pneumoniae also spreads through contact with colonized HCWs. These findings should help improve control measures to reduce in-hospital transmission

    Epidemiology of severe acute respiratory infections from hospital-based surveillance in Madagascar, November 2010 to July 2013.

    No full text
    BACKGROUND:Few comprehensive data exist regarding the epidemiology of severe acute respiratory infections (SARI) in low income countries. This study aimed at identifying etiologies and describing clinical features of SARI-associated hospitalization in Madagascar. METHODS:It is a prospective surveillance of SARI in 2 hospitals for 3 years. Nasopharyngeal swabs, sputum, and blood were collected from SARI patients enrolled and tested for viruses and bacteria. Epidemiological and clinical information were obtained from case report forms. RESULTS:Overall, 876 patients were enrolled in the study, of which 83.1% (728/876) were tested positive for at least one pathogen. Viral and bacterial infections occurred in 76.1% (667/876) and 35.8% (314/876) of tested samples, respectively. Among all detected viruses, respiratory syncytial virus (RSV) was the most common (37.7%; 348/924) followed by influenza virus A (FLUA, 18.4%; 170/924), rhinovirus (RV, 13.5%; 125/924), and adenovirus (ADV, 8.3%; 77/924). Among bacteria, Streptococcus pneumoniae (S. pneumoniae, 50.3%, 189/370) was the most detected followed by Haemophilus influenzae type b (Hib, 21.4%; 79/370), and Klebsiella (4.6%; 17/370). Other Streptococcus species were found in 8.1% (30/370) of samples. Compared to patients aged less than 5 years, older age groups were significantly less infected with RSV. On the other hand, patients aged more than 64 years (OR = 3.66) were at higher risk to be infected with FLUA, while those aged 15-29 years (OR = 3.22) and 30-64 years (OR = 2.39) were more likely to be infected with FLUB (influenza virus B). CONCLUSION:The frequency of influenza viruses detected among SARI patients aged 65 years and more highlights the need for health authorities to develop strategies to reduce morbidity amongst at-risk population through vaccine recommendation. Amongst young children, the demonstrated burden of RSV should guide clinicians for a better case management of children. These findings reveal the need to develop point-of-care tests to avoid overuse of antibiotics and to promote vaccine that could reduce drastically the RSV hospitalizations

    Outcome Risk Factors during Respiratory Infections in a Paediatric Ward in Antananarivo, Madagascar 2010–2012

    Get PDF
    <div><p>Background</p><p>Acute respiratory infections are a leading cause of infectious disease-related morbidity, hospitalisation and mortality among children worldwide, and particularly in developing countries. In these low-income countries, most patients with acute respiratory infection (ARI), whether it is mild or severe, are still treated empirically.</p><p>The aim of the study was to evaluate the risk factors associated with the evolution and outcome of respiratory illnesses in patients aged under 5 years old.</p><p>Materials and Methods</p><p>We conducted a prospective study in a paediatric ward in Antananarivo from November 2010 to July 2012 including patients under 5 years old suffering from respiratory infections. We collected demographic, socio-economic, clinical and epidemiological data, and samples for laboratory analysis. Deaths, rapid progression to respiratory distress during hospitalisation, and hospitalisation for more than 10 days were considered as severe outcomes. We used multivariate analysis to study the effects of co-infections.</p><p>Results</p><p>From November 2010 to July 2012, a total of 290 patients were enrolled. Co-infection was found in 192 patients (70%). Co-infections were more frequent in children under 36 months, with a significant difference for the 19–24 month-old group (OR: 8.0).</p><p>Sixty-nine percent (230/290) of the patients recovered fully and without any severe outcome during hospitalisation; the outcome was scored as severe for 60 children and nine patients (3%) died.</p><p>Risk factors significantly associated with worsening evolution during hospitalisation (severe outcome) were admission at age under 6 months (OR = 5.3), comorbidity (OR = 4.6) and low household income (OR = 4.1).</p><p>Conclusion</p><p>Co-mordidity, low-income and age under 6 months increase the risk of severe outcome for children infected by numerous respiratory pathogens. These results highlight the need for implementation of targeted public health policy to reduce the contribution of respiratory diseases to childhood morbidity and mortality in low income countries.</p></div

    Incidence and risk factors of neonatal bacterial infections: a community-based cohort from Madagascar (2018–2021)

    No full text
    BackgroundFew studies on neonatal severe bacterial infection are available in LMICs. Data are needed in these countries to prioritize interventions and decrease neonatal infections which are a primary cause of neonatal mortality. The BIRDY project (Bacterial Infections and Antimicrobial Drug Resistant among Young Children) was initially conducted in Madagascar, Senegal and Cambodia (BIRDY 1, 2012–2018), and continued in Madagascar only (BIRDY 2, 2018–2021). We present here the BIRDY 2 project whose objectives were (1) to estimate the incidence of neonatal severe bacterial infections and compare these findings with those obtained in BIRDY 1, (2) to identify determinants associated with severe bacterial infection and (3) to specify the antibiotic resistance pattern of bacteria in newborns.MethodsThe BIRDY 2 study was a prospective community-based mother and child cohort, both in urban and semi-rural areas. All pregnant women in the study areas were identified and enrolled. Their newborns were actively and passively followed-up from birth to 3 months. Data on clinical symptoms developed by the children and laboratory results of all clinical samples investigated were collected. A Cox proportional hazards model was performed to identify risk factors associated with possible severe bacterial infection.FindingsA total of 53 possible severe bacterial infection and 6 confirmed severe bacterial infection episodes were identified among the 511 neonates followed-up, with more than half occurring in the first 3 days. For the first month period, the incidence of confirmed severe bacterial infection was 11.7 per 1,000 live births indicating a 1.3 -fold decrease compared to BIRDY 1 in Madagascar (p = 0.50) and the incidence of possible severe bacterial infection was 76.3, indicating a 2.6-fold decrease compared to BIRDY 1 in Madagascar (p < 0.001). The 6 severe bacterial infection confirmed by blood culture included 5 Enterobacterales and one Enterococcus faecium. The 5 Enterobacterales were extended-spectrum ÎČ-lactamases (ESBL) producers and were resistant to quinolones and gentamicin. Enterococcus faecium was sensitive to vancomycin but resistant to amoxicillin and to gentamicin. These pathogns were classified as multidrug-resistant bacteria and were resistant to antibiotics recommended in WHO guidelines for neonatal sepsis. However, they remained susceptible to carbapenem. Fetid amniotic fluid, need for resuscitation at birth and low birth weight were associated with early onset possible severe bacterial infection.ConclusionOur results suggest that the incidence of severe bacterial infection is still high in the community of Madagascar, even if it seems lower when compared to BIRDY 1 estimates, and that existing neonatal sepsis treatment guidelines may no longer be appropriate in Madagascar. These results motivate to further strengthen actions for the prevention, early diagnosis and case management during the first 3 days of life

    Prevalence and Factors Associated with Maternal Group B Streptococcus Colonization in Madagascar and Senegal

    No full text
    International audienceMaternal group B Streptococcus (GBS) colonization is a major risk factor for neonatal GBS infection. However, data on GBS are scarce in low- and middle-income countries. Using sociodemographic data and vaginal swabs collected from an international cohort of mothers and newborns, this study aimed to estimate the prevalence of GBS colonization among pregnant women in Madagascar ( n = 1,603) and Senegal ( n = 616). The prevalence was 5.0% (95% CI, 3.9–6.1) and 16.1% (95% CI, 13.1–19.0) in Madagascar and Senegal, respectively. No factors among sociodemographic characteristics, living conditions, and obstetric history were found to be associated independently with GBS colonization in both countries. This community-based study provides one of the first estimates of maternal GBS colonization among pregnant women from Madagascar and Senegal
    corecore