259 research outputs found

    Dislocations in stacking and commensurate-incommensurate phase transition in bilayer graphene and hexagonal boron nitride

    Full text link
    Dislocations corresponding to a change of stacking in two-dimensional hexagonal bilayers, graphene and boron nitride, and associated with boundaries between commensurate domains are investigated using the two-chain Frenkel-Kontorova model on top of ab initio calculations. Structural transformations of bilayers in which the bottom layer is stretched and the upper one is left to relax freely are considered for gradually increased elongation of the bottom layer. Formation energies of dislocations, dislocation width and orientation of the boundary between commensurate domains are analyzed depending on the magnitude and direction of elongation. The second-order phase transition from the commensurate phase to the incommensurate one with multiple dislocations is predicted to take place at some critical elongation. The order parameter for this transition corresponds to the density of dislocations, which grows continuously upon increasing the elongation of the bottom layer above the critical value. In graphene and metastable boron nitride with the layers aligned in the same direction, where elementary dislocations are partial, this transition, however, is preceded by formation of the first dislocation at the elongation smaller than the critical one. The phase diagrams including this intermediate state are plotted in coordinates of the magnitude and direction of elongation of the bottom layer.Comment: 15 pages, 9 figure

    Comparison of performance of van der Waals-corrected exchange-correlation functionals for interlayer interaction in graphene and hexagonal boron nitride

    Full text link
    Exchange-correlation functionals with corrections for van der Waals interactions (PBE-D2, PBE-D3, PBE-D3(BJ), PBE-TS, optPBE-vdW and vdW-DF2) are tested for graphene and hexagonal boron nitride, both in the form of bulk and bilayer. The characteristics of the potential energy surface, such as the barrier to relative sliding of the layers and magnitude of corrugation, and physically measurable properties associated with relative in-plane and out-of-plane motion of the layers including the shear modulus and modulus for axial compression, shear mode frequency and frequency of out-of-plane vibrations are considered. The PBE-D3(BJ) functional gives the best results for the stackings of hexagonal boron nitride and graphite that are known to be ground-state from the experimental studies. However, it fails to describe the order of metastable states of boron nitride in energy. The PBE-D3 and vdW-DF2 functionals, which reproduce this order correctly, are identified as the optimal choice for general studies. The vdW-DF2 functional is preferred for evaluation of the modulus for axial compression and frequency of out-of-plane vibrations, while the PBE-D3 functional is somewhat more accurate in calculations of the shear modulus and shear mode frequency. The best description of the latter properties, however, is achieved also using the vdW-DF2 functional combined with consideration of the experimental interlayer distance. In the specific case of graphene, the PBE-D2 functional works very well and can be further improved by adjustment of the parameters.Comment: 22 pages, 4 figue

    Restricted simple Lie (super)algebras in characteristic 33

    Full text link
    We give explicit formulas proving restrictedness of the following Lie (super)algebras: known exceptional simple vectorial Lie (super)algebras in characteristic 3, deformed Lie (super)algebras with indecomposable Cartan matrix, and (under certain conditions) their simple subquotients over an algebraically closed field of characteristic 3, as well as one type of the deformed divergence-free Lie superalgebras with any number of indeterminates in any characteristic.Comment: the final version, as publishe

    NCS-constrained exhaustive search using oligomeric models

    Get PDF
    Copyright © 2008 International Union of CrystallographyThe efficiency of the cross-rotation function step of molecular replacement (MR) is intrinsically limited as it uses only a fraction of the Patterson vectors. Along with general techniques extending the boundaries of the method, there are approaches that utilize specific features of a given structure. In special cases, where the directions of noncrystallographic symmetry axes can be unambiguously derived from the self-rotation function and the structure of the homologue protein is available in a related oligomeric state, the cross-rotation function step of MR can be omitted. In such cases, a small number of yet unknown parameters defining the orientation of the oligomer and/or its internal organization can be optimized using an exhaustive search. Three difficult MR cases are reported in which these parameters were determined and the oligomer was positioned according to the maximal value of the correlation coefficient in a series of translation searches.NI

    The development of the Institution of the Commissioner on humain rights in the Russian Federation: the first five yerars.

    Get PDF
    [Abstract non disponibile

    3D CFD simulation of aerodynamics of a 406 MW[t] CFB boiler

    Get PDF
    Modeling of various processes in CFB boilers (combustion, aerodynamics, hydrodynamics, etc.) is connected with the solution of systems of differential equations with a large number of unknowns that leads to their simplification and, accordingly, affect the quality of the calculation. The work consists of several parts and aims to assess the applicability of some or other mathematical algorithms to obtain a quantitative simulation of processes in power boilers with circulating fluidized bed. In part, presented in this article, the simulation of CFB boiler aerodynamics using ANSYS FLUENT is considered

    Structure and energetics of carbon, hexagonal boron nitride and carbon/hexagonal boron nitride single-layer and bilayer nanoscrolls

    Full text link
    Single-layer and bilayer carbon and hexagonal boron nitride nanoscrolls as well as nanoscrolls made of bilayer graphene/hexagonal boron nitride heterostructure are considered. Structures of stable states of the corresponding nanoscrolls prepared by rolling single-layer and bilayer rectangular nanoribbons are obtained based on the analytical model and numerical calculations. The lengths of nanoribbons for which stable and energetically favorable nanoscrolls are possible are determined. Barriers to rolling of single-layer and bilayer nanoribbons into nanoscrolls and barriers to nanoscroll unrolling are calculated. Based on the calculated barriers nanoscroll lifetimes in the stable state are estimated. Elastic constants for bending of graphene and hexagonal boron nitride layers used in the model are found by density functional theory calculations.Comment: 9 pages, 6 figure
    corecore