13 research outputs found

    Influence of typological features of the nervous system on individual performance in running for short distances in athletes with visual impairment on the example of an elite athlete

    No full text
    Introduction: The purpose of the work is to theoretically and experimentally substantiate the influence of psychophysiological factors on individual performance in athletics sprint in high-qualified athletes on the example of an elite athlete. Material and methods: In this study, participated 1 athlete, 36 years of age, female. Athlete is specializing in short-distance running and long jump, the European Athletics Champion 2010; prize winner of the World Paralympic and Paralympic Games among athletes with visual impairments (T12 category) in 2016. The study was conducted for 5 months. Twice a week, testing was conducted (psychophysiological indicators and running speed); 36 tests of one athlete were conducted. Individual characteristics of the psychophysiological state and results in running for 100 m for five months were analyzed. Results. The models of multiple linear regression between results in 100 m run for an elite athlete with visual impairment and psychophysiological indices are compiled. High importance of psychophysiological indices in individual performance in running on 100 m is shown. Conclusions. Compensatory mechanisms of visual function deficiency were established to maintain high speed in the 100 m run as psychophysiological functions: indicators characteristic of sprinters (speed of simple reaction and motility of the nervous system) and specific indicators (efficiency, strength of the nervous system)

    Interplay of histidine residues of the Alzheimer's disease Aβ peptide governs its Zn-induced oligomerization

    Get PDF
    Conformational changes of Aβ peptide result in its transformation from native monomeric state to the toxic soluble dimers, oligomers and insoluble aggregates that are hallmarks of Alzheimer’s disease (AD). Interactions of zinc ions with Aβ are mediated by the N-terminal Aβ(1–16) domain and appear to play a key role in AD progression. There is a range of results indicating that these interactions trigger the Aβ plaque formation. We have determined structure and functional characteristics of the metal binding domains derived from several Aβ variants and found that their zinc-induced oligomerization is governed by conformational changes in the minimal zinc binding site (6)HDSGYEVHH(14). The residue H6 and segment (11)EVHH(14), which are part of this site are crucial for formation of the two zinc-mediated interaction interfaces in Aβ. These structural determinants can be considered as promising targets for rational design of the AD-modifying drugs aimed at blocking pathological Aβ aggregation

    Minimal Zn2+ Binding Site of Amyloid-β

    Get PDF
    Zinc-induced aggregation of amyloid-β peptide (Aβ) is a hallmark molecular feature of Alzheimer's disease. Here we provide direct thermodynamic evidence that elucidates the role of the Aβ region 6–14 as the minimal Zn2+ binding site wherein the ion is coordinated by His6, Glu11, His13, and His14. With the help of isothermal titration calorimetry and quantum mechanics/molecular mechanics simulations, the region 11–14 was determined as the primary zinc recognition site and considered an important drug-target candidate to prevent Zn2+-induced aggregation of Aβ

    Insights into the Cardiotoxic Effects of <i>Veratrum Lobelianum</i> Alkaloids: Pilot Study

    No full text
    Jervine, protoveratrine A (proA), and protoveratrine B (proB) are Veratrum alkaloids that are presented in some remedies obtained from Veratrum lobelianum, such as Veratrum aqua. This paper reports on a single-center pilot cardiotoxic mechanism study of jervine, proA, and proB in case series. The molecular aspects were studied via molecular dynamic simulation, molecular docking with cardiac sodium channel NaV1.5, and machine learning-based structure–activity relationship modeling. HPLC-MS/MS method in combination with clinical events were used to analyze Veratrum alkaloid cardiotoxicity in patients. Jervine demonstrates the highest docking score (−10.8 kcal/mol), logP value (4.188), and pKa value (9.64) compared with proA and proB. Also, this compound is characterized by the lowest calculated IC50. In general, all three analyzed alkaloids show the affinity to NaV1.5 that highly likely results in cardiotoxic action. The clinical data of seven cases of intoxication by Veratrum aqua confirms the results of molecular modeling. Patients exhibited nausea, muscle weakness, bradycardia, and arterial hypotension. The association between alkaloid concentrations in blood and urine and severity of patient condition is described. These experiments, while primary, confirmed that jervine, proA, and proB contribute to cardiotoxicity by NaV1.5 inhibition

    Fast Protein and Metabolites (Nucleotides and Nucleosides) Liquid Chromatography Technique and Chemical Sensor for the Assessment of Fish and Meat Freshness

    Get PDF
    Fast protein and metabolite liquid chromatography (FPLMC) was introduced years ago to enable the easy separation of high-molecular compounds such as proteins from small molecules and the identification of the low-molecular substances. In this paper, the method is applied for the rapid evaluation of freshness and monitoring the aging of animal meat and fish. A novel chromatographic sensor was developed with a deep UV LED-based photometric detection unit (255–265 nm), an original flow cuvette and registration scheme; the processing of a chromatogram with the sensor takes approximately 15 min. Strict isochronism between the elution of ATP metabolites, mainly hypoxanthine (Hx) and inosine monophosphate (IMP), and the time of maturation of meat or fish, was discovered. A new freshness index H* = [Hx]/[IMP] was introduced, which is proportional to the instrumental delay time in the FPMLC chromatograms: the H* index < 0.5 indicates the presence of inosine monophosphate (IMP) and the high quality of the meat or fish. Reasonably strong correlations were revealed between data obtained by FPMLC and total volatile basic nitrogen TVB-N (for fish) or volatile fatty acids VFA (for meat) content. Moreover, putative nucleotide salvage and an increase in the concentration of IMP were observed in fish after heat treatment using the FPMLC sensor and NMR technique

    Non-equimolar Cantor high entropy alloy fabrication using metal powder cored wire arc additive manufacturing

    Get PDF
    In the current contribution, the wire arc additive manufacturing of non-equimolar Co-Cr-Fe-Mn-Ni high-entropy alloy using gas metal arc welding (GMAW) with metal powder-cored wire (MPCW) is proposed. The powder's filler of designed wire feedstock contains Co-Cr-Mn-Ni components in equal atomic amounts relative to each other with Fe metal stripe as a shield. The proposed method provides the possibility to build bulk high-entropy alloy samples with the desired characteristics. The current work approach is superior in a number of indicators to such alternative methods of obtaining bulk HEAs as melting in vacuum, plasma arc melting, selective laser melting, or electron beam melting
    corecore