28 research outputs found

    Value of paraspinal muscle myography in diagnosing L5 radiculopathy

    Get PDF
    Introduction. Electromyography (EMG) is an important diagnostic tool for the evaluation of radiculopathy. Since 1990s a paraspinal mapping technique is used, which detects spontaneous activity in paraspinal muscles (PM) at the level of several vertebral segments. This modality seems to be highly conclusive for diagnosing radicular lesions. The main limitation of this method is spontaneous activity dependence on the disease duration. The aim of the study is to assess if PM EMG with motor unit potential (MUP) analysis is conclusive for diagnosing lumbar radiculopathy. Materials and methods. The study examined 58 patients (26 men and 32 women) aged 2673 years with MRI-confirmed symptomatic L5 mono-radiculopathy due to L4L5 herniated discs. The study assessed the neurological status and needle EMG of m. tensor fasciae latae (TFL) and PM at L4L5 and L3L4 levels on both symptomatic and healthy sides immediately before radicular microscopic decompression surgery. Surgery outcomes were evaluated by early and late postoperative questioning. Results. In PMs of the affected level and side, the average MUP duration was significantly different from opposite MUPs at the higher segment (Ñ€ 0.001). At 3-month disease duration, a neurogenic pattern was significantly more frequent in affected PMs (p = 0.031) with neurogenic PM MUP rearrangement in 73.3% of patients. In the TFL (L5), neurogenic changes were reported only in 47.4% of patients. When compared to normal values, significant differences were found in the average duration of TFL MUPs (Ñ€ = 0.001) and PM MUPs of the affected level and side (Ñ€ 0.001) both in patients with motor disorders and those with isolated pain syndrome or sensory disorders. Conclusions. For diagnosing radiculopathy, the sensitivity of needle PM EMG is 82.6% (48/58; 95% CI 70.691.4%). Compared to limb myotome assessment, the highest informative value of PM EMG was reported in patients with the disease duration for up to 3 months. PM EMG was conclusive for diagnosing radicular lesions in patients with isolated pain syndrome or sensory disorders

    Low back pain as an equivalent of neurogenic claudication in elderly patient: Case report

    No full text
    This clinical report presents the case of chronic low back pain in elderly female referring to multilevel (L2-L5) degenerative lumbar spinal stenosis without typical neurogenic claudication and leg pain. Subsequent minimally invasive surgical decompression produced complete resolve of the pain and drastic improvement life quality. This surgery confirmed the pain origin and proves the possibility of sole low back pain as an equivalent of neurogenic claudication. Considering this type of clinical pattern of spinal stenosis can direct general practitioner or other medical professional to correct diagnosis and prompt surgical treatment.&nbsp;</p

    Studies on genes expression pattern of antioxidant enzymes and enzymes involved into the genetic information implementation in

    No full text
    The emergence of antibiotic-resistant bacteria is considered a serious problem. The resistance of bacteria against antimicrobial substances becomes important in the repair systems for damage to DNA and RNA molecules. The role of the antioxidant system in the development of bacterial resistance against antibiotics is not yet practically studied. The article studied the expression regulation of the genes of antioxidant enzymes and enzymes involved in the genetic information in E. coli cells with the antibiotic resistance against apramycin and cefatoxime. The study was conducted on bacterial cells resistant against these two antibiotics. The genes blaOXA-1, blaSHV, blaTEM, mdtK, aadA1, aadA2, sat, strA, blaCTX, blaPER-2, tnpA, tnpR, intC1 and intC1c were identified in bacterial cell case. This indicates the presence of plasmids in bacteria with these genes, which provide bacterial resistance to apramycin and cefatoxime. It was established that during the formation of cefotaxime resistance, there was a sharp increase in the expression of the Cu, Zn superoxide dismutase gene: in comparison with the control group, the representation of its transcripts increased 141.04 times for cefotoxime and 155.42 times for apramycin. It has been established that during the formation of resistance to the studied antibiotics in E. coli, an increase in the expression of the end4 and end3 genes is observed. There is tendency toward an increase in the number of transcripts of the pol3E gene observed in the formation of resistance against cefotaxime and apromycin

    Minimally invasive surgical treatment for Kimmerle anomaly

    No full text
    Introduction: Kimmerle anomaly is the bony ridge between the lateral mass of atlas and its posterior arch or transverse process. This bony tunnel may include the V3 segment of the vertebral artery, vertebral vein, posterior branch of the C1 spinal nerve, and the sympathetic nerves, which results in the clinical symptoms of this disease. Reports on the surgical treatment of Kimmerle anomaly are rare. There are no reports on minimally invasive surgical treatment of this pathology. Materials and Methods: Six patients with Kimmerle anomaly were treated from 2015 until 2016. Three patients underwent routine surgery through the posterior midline (posterior midline approach [PMA] group). The other three patients underwent decompression with a paravertebral transmuscular approach (PTMA group). The operation time, intraoperative blood loss, clinical symptoms before and after surgery as well as intra- and post-operative complications were compared between the PTMA and PMA groups. Results: The results of the surgical treatments were assessed at discharge and 1 year later. Blood loss, operation time, and intensity of pain at the postoperative wound area were lower in the PTMA group. There were no postoperative complications. The delayed surgical treatment outcomes did not depend on the method of artery decompression. Conclusions: Surgical treatment of vertebral artery compression in patients with Kimmerle anomaly is preferable in cases where conservative treatment is inefficient. A minimally invasive PTMA is an alternative to the routine midline posterior approach, providing direct visualization of the compressed V3 segment of the vertebral artery and minimizing postoperative pain

    The First Selenoanhydride in the Series of Chlorophyll a Derivatives, Its Stability and Photoinduced Cytotoxicity

    No full text
    In this work, we obtained the first selenium-containing chlorin with a chalcogen atom in exlocycle E. It was shown that the spectral properties were preserved in the target compound and the stability increased at two different pH values, in comparison with the starting purpurin-18. The derivatives have sufficiently high fluorescence and singlet oxygen quantum yields. The photoinduced cytotoxicity of sulfur- and selenium-anhydrides of chlorin p6 studied for the first time in vitro on the S37 cell line was found to be two times higher that of purpurin-18 and purpurinimide studied previously. Moreover, the dark cytotoxicity increased four-fold in comparison with the latter compounds. Apparently, the increase in the dark cytotoxicity is due to the interaction of the pigments studied with sulfur- and selenium-containing endogenous intracellular compounds. Intracellular distributions of thioanhydride and selenoanhydride chlorin p6 in S37 cells were shown in cytoplasm by diffusion distribution. The intracellular concentration of the sulfur derivative turned out to be higher and, as a consequence, its photoinduced cytotoxicity was higher as well

    <i>N</i>-Heterocyclic Carbenes and Their Metal Complexes Based on Histidine and Histamine Derivatives of Bacteriopurpurinimide for the Combined Chemo- and Photodynamic Therapy of Cancer

    No full text
    Photodynamic therapy (PDT) is currently regarded as a promising method for the treatment of oncological diseases. However, it involves a number of limitations related to the specific features of the method and the specific characteristics of photosensitizer molecules, including tumor hypoxia, small depth of light penetration into the tumor tissue, and low accumulation sensitivity. These drawbacks can be overcome by combining PDT with other treatment methods, for example, chemotherapy. In this work, we were the first to obtain agents that contain bacteriopurpurinimide as a photodynamic subunit and complexes of gold(I) that implement the chemotherapy effect. To bind the latter agents, N-heterocyclic carbenes (NHC) based on histidine and histamine were obtained. We considered alternative techniques for synthesizing the target conjugates and selected an optimal one that enabled the production of preparative amounts for biological assays. In vitro studies showed that all the compounds obtained exhibited high photoinduced activity. The C-donor Au(I) complexes exhibited the maximum specific activity at longer incubation times compared to the other derivatives, both under exposure to light and without irradiation. In in vivo studies, the presence of histamine in the NHC-derivative of dipropoxy-BPI (7b) had no significant effect on its antitumor action, whereas the Au(I) metal complex of histamine NHC-derivative with BPI (8b) resulted in enhanced antitumor activity and in an increased number of remissions after photodynamic treatment

    13,15-N-Cycloimide derivatives of chlorin p6 with isonicotinyl substituent are photosensitizers targeted to lysosomes

    No full text
    Four monocationic cycloimide derivatives of chlorin p(6) (CICD) were studied as photosensitizers and compared to a structurally similar neutral derivative. Cationic CICD are highly photostable (quantum yield of photobleaching is about 1 x 10(-5), generate singlet oxygen under irradiation (quantum yields are 0.3-0.45), can be involved in a photo-induced substrate-dependent generation of superoxide radicals, but do not produce OH . 17,18-delta-lacton 13(2)-(N-methylisonicotinylamido)-13,15-cycloimide mesochlorin p(6) () and 13(2)-(N-methylisonicotinylamido)-13,15-cycloimide mesochlorin p(6) methyl ester () possess high cancer cell killing photodynamic activity, but they provide no photoinduced bactericidal effect. Substitution of an ethyl group with a hydroxyethyl or acetyl group at position 3 of the macrocycle results in a decrease in extinction and intracellular accumulation that finally leads to the reduced photocytotoxicity. Cationic CICD are targeted to lysosomes, and their intracellular penetration occurs most probably via caveolae-dependent endocytosis. Photodynamic treatment with cationic CICD results in the cell death via necrosis at both sub-phototoxic (40-70% of dead cells) and phototoxic (90-100% of dead cells) regimes of cell treatment. Irradiation induces lysosome damage, leakage of CICD from lysosomes and development of protease activity in cytoplasm, whereas mitochondria are not affected with irradiation. A positive charge of cationic CICD modified drastically an internalization pathway, sites of intracellular localization and mechanisms of photoinduced cytotoxicity as compared to previously studied neutral and anionic CICD. Our experiments with different CICD show that varying charge and structure of substituents it is possible to modulate many cellular properties of CICD in order to find the best molecular template of the advanced near-IR photosensitizer for photodynamic therapy
    corecore