1,308 research outputs found
INSTRUMENTED START BLOCKS: A QUANTITATIVE COACHING AID
To effect improvement in a skill such as the block start in sprinting, immediate quantitative feedback pertaining to the forces generated during the start is invaluable to both the coach and athlete. The purpose of the present study was to design a set of instrumented starting blocks, appropriate for use in the field, which would provide immediate feedback pertaining to the kinetics of a block start. Design considerations included: resolution of orthogonal force components for right and left foot pedals independently; adjustability to enable and athlete's normal foot and block placement; and adhering to standard international starting block design specifications in terms of dimensions and rigidity. The starting blocks consisted of two standard adjustable stadium starting block pedals suspended clear of the ground via two instrumented axles. The mild steel rod axles were milled to dimensions which allowed the axles to deflect minimally under expected loads. Each axle was attached laterally (and directed medially) from a 230 mm wide mild steel parallel flange channel. This base plate was firmly affixed to the synthetic track surface by six 12 mm commercial shoe spikes. Eight 3 mm student strain gauges were adhered to each axle with 4 gauges aligned to each orthogonal axis. The gauges were incorporated into a Wheatstone Bridge circuitry and arranged to measure the shear force on the axle by utilising the bending moment difference method. Using this bending moment difference method, the magnitude of the force signal recorded was unaffected by the position of force application across the block pedal. Each of the 4 orthogonal channels contained a separate amplifier to magnify the differential signal from the gauges. Calibration was accomplished via static loading of each axle in the orthogonal plane with known loads. The differential signal developed from the strain gauge circuitry under load was amplified and sampled (1000 Hz) by a personal computer using a WIN 30-D A-D converter card. From this data useful variables such as maximum horizontal and vertical force, impulse, block time, block velocity and block acceleration were quantified using custom software and were immediately available to the athlete and coach. Analysis of data obtained from the blocks for state level, national level and the current male 100 m world champion indicated the instrumented blocks were able to provide immediate relevant kinetic data for use by sprint coaches in the field
Forecasting extreme stratospheric polar vortex events
Extreme polar vortex events known as sudden stratospheric warmings can influence surface winter weather conditions, but their timing is difficult to predict. Here, we examine factors that influence their occurrence, with a focus on their timing and vertical extent. We consider the roles of the troposphere and equatorial stratosphere separately, using a split vortex event in January 2009 as the primary case study. This event cannot be reproduced by constraining wind and temperatures in the troposphere alone, even when the equatorial lower stratosphere is in the correct phase of the quasi biennial oscillation. When the flow in the equatorial upper stratosphere is also constrained, the timing and spatial evolution of the vortex event is captured remarkably well. This highlights an influence from this region previously unrecognised by the seasonal forecast community. We suggest that better representation of the flow in this region is likely to improve predictability of extreme polar vortex events and hence their associated impacts at the surface
Semiparametric theory and empirical processes in causal inference
In this paper we review important aspects of semiparametric theory and
empirical processes that arise in causal inference problems. We begin with a
brief introduction to the general problem of causal inference, and go on to
discuss estimation and inference for causal effects under semiparametric
models, which allow parts of the data-generating process to be unrestricted if
they are not of particular interest (i.e., nuisance functions). These models
are very useful in causal problems because the outcome process is often complex
and difficult to model, and there may only be information available about the
treatment process (at best). Semiparametric theory gives a framework for
benchmarking efficiency and constructing estimators in such settings. In the
second part of the paper we discuss empirical process theory, which provides
powerful tools for understanding the asymptotic behavior of semiparametric
estimators that depend on flexible nonparametric estimators of nuisance
functions. These tools are crucial for incorporating machine learning and other
modern methods into causal inference analyses. We conclude by examining related
extensions and future directions for work in semiparametric causal inference
Performance of Scheduling Policies in Adversarial Networks with Non-synchronized Clocks
In this paper we generalize the Continuous Adversarial Queuing Theory (CAQT) model (Blesa et al. in MFCS, Lecture Notes in Computer Science, vol. 3618, pp. 144–155, 2005) by considering the possibility that the router clocks in the network are not synchronized. We name the new model Non Synchronized CAQT (NSCAQT). Clearly, this new extension to the model only affects those scheduling policies that use some form of timing. In a first approach we consider the case in which although not synchronized, all clocks run at the same speed, maintaining constant differences. In this case we show that all universally stable policies in CAQT that use the injection time and the remaining path to schedule packets remain universally stable. These policies include, for instance, Shortest in System (SIS) and Longest in System (LIS). Then, we study the case in which clock differences can vary over time, but the maximum difference is bounded. In this model we show the universal stability of two families of policies related to SIS and LIS respectively (the priority of a packet in these policies depends on the arrival time and a function of the path traversed). The bounds we obtain in this case depend on the maximum difference between clocks. This is a necessary requirement, since we also show that LIS is not universally stable in systems without bounded clock difference. We then present a new policy that we call Longest in Queues (LIQ), which gives priority to the packet that has been waiting the longest in edge queues. This policy is universally stable and, if clocks maintain constant differences, the bounds we prove do not depend on them. To finish, we provide with simulation results that compare the behavior of some of these policies in a network with stochastic injection of packets
Dynamics and Berry phase of two-species Bose-Einstein condensates
In terms of exact solutions of the time-dependent Schrodinger equation for an
effective giant spin modeled from a coupled two-mode Bose-Einstein condensate
(BEC) with adiabatic and cyclic time-varying Raman coupling between two
hyperfine states of the BEC, we obtain analytic time-evolution formulas of the
population imbalance and relative phase between two components with various
initial states, especially the SU(2)coherent state. We find the Berry phase
depending on the number parity of atoms, and particle number dependence of the
collapse revival of population-imbalance oscillation. It is shown that
self-trapping and phase locking can be achieved from initial SU(2) coherent
states with proper parameters.Comment: 18 pages,5 figure
Evidence for late-time dust formation in the ejecta of supernova SN 1995N from emission-line asymmetries
We present a study of the dust associated with the core-collapse supernova SN 1995N. Infrared emission detected 14–15 yr after the explosion was previously attributed to thermally echoing circumstellar material (CSM) associated with the supernova (SN) progenitor. We argue that this late-time emission is unlikely to be an echo, and is more plausibly explained by newly formed dust in the SN ejecta, indirectly heated by the interaction between the ejecta and the CSM. Further evidence in support of this scenario comes from emission-line profiles in spectra obtained 22 yr after the explosion; these are asymmetric, showing greater attenuation on the red wing, consistent with absorption by dust within the expanding ejecta. The spectral energy distribution and emission-line profiles at epochs later than ∼5000 d are both consistent with the presence of about 0.4 M⊙ of amorphous carbon dust. The onset of dust formation is apparent in archival optical spectra, taken between 700 and 1700 d after the assumed explosion date. As this is considerably later than most other instances where the onset of dust formation has been detected, we argue that the explosion date must be later than previously assumed
Macroscopic Quantum Fluctuations in the Josephson Dynamics of Two Weakly Linked Bose-Einstein Condensates
We study the quantum corrections to the Gross-Pitaevskii equation for two
weakly linked Bose-Einstein condensates. The goals are: 1) to investigate
dynamical regimes at the borderline between the classical and quantum behaviour
of the bosonic field; 2) to search for new macroscopic quantum coherence
phenomena not observable with other superfluid/superconducting systems. Quantum
fluctuations renormalize the classical Josephson oscillation frequencies. Large
amplitude phase oscillations are modulated, exhibiting collapses and revivals.
We describe a new inter-well oscillation mode, with a vanishing (ensemble
averaged) mean value of the observables, but with oscillating mean square
fluctuations. Increasing the number of condensate atoms, we recover the
classical Gross-Pitaevskii (Josephson) dynamics, without invoking the
symmetry-breaking of the Gauge invariance.Comment: Submitte
Input-output theory for fermions in an atom cavity
We generalize the quantum optical input-output theory developed for optical
cavities to ultracold fermionic atoms confined in a trapping potential, which
forms an "atom cavity". In order to account for the Pauli exclusion principle,
quantum Langevin equations for all cavity modes are derived. The dissipative
part of these multi-mode Langevin equations includes a coupling between cavity
modes. We also derive a set of boundary conditions for the Fermi field that
relate the output fields to the input fields and the field radiated by the
cavity. Starting from a constant uniform current of fermions incident on one
side of the cavity, we use the boundary conditions to calculate the occupation
numbers and current density for the fermions that are reflected and transmitted
by the cavity
Glueballs of Super Yang-Mills from Wrapped Branes
In this paper we study qualitative features of glueballs in N=1 SYM for
models of wrapped branes in IIA and IIB backgrounds. The scalar mode, 0++ is
found to be a mixture of the dilaton and the internal part of the metric. We
carry out the numerical study of the IIB background. The potential found
exhibits a mass gap and produces a discrete spectrum without any cut-off. We
propose a regularization procedure needed to make these states normalizable.Comment: 22 pages plus a appendixes, 2 figure
- …