6,704 research outputs found

    Catastrophic eruption of magnetic flux rope in the corona and solar wind with and without magnetic reconnection

    Full text link
    It is generally believed that the magnetic free energy accumulated in the corona serves as a main energy source for solar explosions such as coronal mass ejections (CMEs). In the framework of the flux rope catastrophe model for CMEs, the energy may be abruptly released either by an ideal magnetohydrodynamic (MHD) catastrophe, which belongs to a global magnetic topological instability of the system, or by a fast magnetic reconnection across preexisting or rapidly-developing electric current sheets. Both ways of magnetic energy release are thought to be important to CME dynamics. To disentangle their contributions, we construct a flux rope catastrophe model in the corona and solar wind and compare different cases in which we either prohibit or allow magnetic reconnection to take place across rapidly-growing current sheets during the eruption. It is demonstrated that CMEs, even fast ones, can be produced taking the ideal MHD catastrophe as the only process of magnetic energy release. Nevertheless, the eruptive speed can be significantly enhanced after magnetic reconnection sets in. In addition, a smooth transition from slow to fast eruptions is observed when increasing the strength of the background magnetic field, simply because in a stronger field there is more free magnetic energy at the catastrophic point available to be released during an eruption. This suggests that fast and slow CMEs may have an identical driving mechanism.Comment: 7 pages, 4 figures, ApJ, in press (vol. 666, Sept. 2007

    Dynamics and Berry phase of two-species Bose-Einstein condensates

    Get PDF
    In terms of exact solutions of the time-dependent Schrodinger equation for an effective giant spin modeled from a coupled two-mode Bose-Einstein condensate (BEC) with adiabatic and cyclic time-varying Raman coupling between two hyperfine states of the BEC, we obtain analytic time-evolution formulas of the population imbalance and relative phase between two components with various initial states, especially the SU(2)coherent state. We find the Berry phase depending on the number parity of atoms, and particle number dependence of the collapse revival of population-imbalance oscillation. It is shown that self-trapping and phase locking can be achieved from initial SU(2) coherent states with proper parameters.Comment: 18 pages,5 figure

    Biological Electron Energy Loss Spectroscopy in the Field-Emission Scanning Transmission Electron Microscope

    Get PDF
    The dedicated scanning transmission electron microscope (STEM) combined with parallel electron energy loss spectroscopy (EELS) provides a very sensitive means of detecting specific elements in small structures. EELS is more sensitive than optimized energy-dispersive X-ray spectroscopy by a factor of about three for calcium. Measurement of such low concentrations requires special processing methods such as difference-acquisition techniques and multiple least squares procedures for fitting reference spectra. By analyzing data recorded at each pixel in a spectrum-image it is possible to map quantitatively the elemental distributions in a specimen. It is possible to prepare cryosections that are sufficiently thin to avoid excessive plural inelastic scattering so analysis can be performed at 100 keV beam energy. Under optimal conditions, a resolution of 10 nm and detection limits of a few atoms are achievable for elements such as calcium, phosphorus and iron. In the field emission STEM certain types of chemical information can be extracted from biological specimens. Valence EELS has been exploited to measure water distributions in frozen hydrated cryosections

    Enhancing Optical Up-Conversion Through Electrodynamic Coupling with Ancillary Chromophores

    Get PDF
    In lanthanide-based optical materials, control over the relevant operating characteristics–for example transmission wavelength, phase and quantum efficiency–is generally achieved through the modification of parameters such as dopant/host combination, chromophore concentration and lattice structure. An alternative avenue for the control of optical response is through the introduction of secondary, codoped chromophores. Here, such secondary centers act as mediators, commonly bridging the transfer of energy between primary absorbers of externally sourced optical input and other sites of frequency-converted emission. Utilizing theoretical models based on experimentally feasible, three-dimensional crystal lattice structures; a fully quantized theoretical framework provides insights into the locally modified mechanisms that can be implemented within such systems. This leads to a discussion of how such effects might be deployed to either enhance, or potentially diminish, the efficiency of frequency up-conversion

    Shear Lag And Beam Theories For Structures

    Get PDF
    Dynamic problems are solved using beam theory and shear lag approximations, and also FEM. For a laminated plate incorporating through-thickness fibers, highlights are: 1) Inertia complicates the fiber pullout problem considerably. 2) Disturbances propagate along frictionally coupled fibers at less than the bar wave speed. 3) Unstable regimes appear in interfacial friction. 4) Large scale bridging creates oscillatory, predominately mode II crack profiles and 5) strongly modifies fracture at low to intermediate velocities. These results imply that dynamic delamination damage evolution will be dominated by distributed (not localized) bridging and friction effects. Solutions for single cracks with small process zones are less relevant than those for multiple cracks with large scale bridging, for which some initial solutions are discussed

    Periodic instanton method and macroscopic quantum tunneling between two weakly-linked Bose-Einstein condensates

    Get PDF
    A new method is used to investigate the tunneling between two weakly-linked Bose-Einstein condensates confined in double-well potential traps. The nonlinear interaction between the atoms in each well contributes to a finite chemical potential, which, with consideration of periodic instantons, leads to a remarkably high tunneling frequency. This result can be used to interpret the newly found Macroscopic Quantum Self Trapping (MQST) effect. Also a new kind of first-order crossover between different regions is predicted.Comment: 4 pages, 2 eps figures, final version to appear in Phys. Rev.

    Local coherence and the temporal development of second harmonic emission

    Get PDF
    In a variety of mesoscopically disordered systems, high levels of optical excitation resulting from pulsed laser irradiation can establish optical coherence within separate particles or locally ordered domains, leading to second harmonic emission whose temporal signature characterizes the decay of the excited state population. Examples of such systems will include colloids, cell and membrane suspensions, and many plastics, glasses and other modern materials. With pulsed excitation of sufficient intensity to elicit the onset of saturation, second harmonic emission on the throughput of a subsequent probe beam exhibits a characteristic decay and recovery. Detailed calculations show that such features arise not only in systems whose optical response involves two discrete levels, but also in systems of considerably greater electronic complexity. Deconvolution of the temporal trace of the harmonic signal serves as an independent means of monitoring the decay of the excited state. The extent of recovery in the harmonic signal also serves to register the extent of local coherence, and hence in many systems the localization of structural order. Finally, the principles introduced in the theory are shown to be applicable to other types of system such as certain photochromic materials

    Exact calculation of the skyrmion lifetime in a ferromagnetic Bose condensate

    Full text link
    The tunneling rate of a skyrmion in ferromagnetic spin-1/2 Bose condensates through an off-centered potential barrier is calculated exactly with the periodic instanton method. The prefactor is shown to depend on the chemical potential of the core atoms, at which level the atom tunnels. Our results can be readily extended to estimate the lifetime of other topological excitations in the condensate, such as vortices and monopoles.Comment: 16 pages, 4 figures, to appear Phys. Rev.

    Nonparametric Methods for Doubly Robust Estimation of Continuous Treatment Effects

    Get PDF
    Continuous treatments (e.g. doses) arise often in practice, but many available causal effect estimators are limited by either requiring parametric models for the effect curve, or by not allowing doubly robust covariate adjustment. We develop a novel kernel smoothing approach that requires only mild smoothness assumptions on the effect curve and still allows for misspecification of either the treatment density or outcome regression. We derive asymptotic properties and give a procedure for data‐driven bandwidth selection. The methods are illustrated via simulation and in a study of the effect of nurse staffing on hospital readmissions penalties

    Large-Scale Atomistic Simulations of Environmental Effects on the Formation and Properties of Molecular Junctions

    Full text link
    Using an updated simulation tool, we examine molecular junctions comprised of benzene-1,4-dithiolate bonded between gold nanotips, focusing on the importance of environmental factors and inter-electrode distance on the formation and structure of bridged molecules. We investigate the complex relationship between monolayer density and tip separation, finding that the formation of multi-molecule junctions is favored at low monolayer density, while single-molecule junctions are favored at high density. We demonstrate that tip geometry and monolayer interactions, two factors that are often neglected in simulation, affect the bonding geometry and tilt angle of bridged molecules. We further show that the structures of bridged molecules at 298 and 77 K are similar.Comment: To appear in ACS Nano, 30 pages, 5 figure
    corecore