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ABSTRACT:  Dynamic problems are solved using beam theory and shear lag approximations, and also 
FEM.  For a laminated plate incorporating through-thickness fibers, highlights are:  1) Inertia complicates the 
fiber pullout problem considerably.  2) Disturbances propagate along frictionally coupled fibers at less than 
the bar wave speed.  3) Unstable regimes appear in interfacial friction.  4) Large scale bridging creates 
oscillatory, predominately mode II crack profiles and 5) strongly modifies fracture at low to intermediate 
velocities.  These results imply that dynamic delamination damage evolution will be dominated by 
distributed (not localized) bridging and friction effects.  Solutions for single cracks with small process zones 
are less relevant than those for multiple cracks with large scale bridging, for which some initial solutions are 
discussed. 

1 INTRODUCTION 
Figure 1 shows a typical problem of current interest in the dynamic performance of structures.  A 
projectile impacts upon a laminated armored structure, which absorbs energy and limits damage by 
a series of mechanisms, including comminution of ceramic tiles, viscous flow of the comminuted 
ceramic, spreading of the load transferred to structural elements, multiple delamination of a 
structural skin, and detachment of structural stiffeners.  Performance characteristics of interest 
include the maximum dynamic deflection and the residual strength of the skin/stiffener assembly.  
Such structures are currently designed by intuition and analyzed by fabricating and testing 
hardware.  Predictions of the ballistic performance, which might greatly reduce the cost of design 
and optimization, are unavailable because the physics and mechanics of the various mechanisms 
involved are not well known.  Here we review recent efforts to understand some aspects of the 
problem of Fig. 1, which are also relevant to diverse other dynamic damage problems. 
 

 

 

 

 

 

Figure 1.  A typical complex problem in dynamic damage evolution. 

2 DYNAMIC FIBER PULLOUT AND PUSH-IN 
Through-thickness reinforcement, such as pins, stitches, or woven yarns, greatly enhances 
delamination resistance under both static and dynamic loading.  A central problem in this 
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phenomenon is the mechanics of pullout or push-in of a fiber (or pin, stitch, or yarn) embedded in a 
matrix that is a half-space.  For static loading, this problem can be accurately described in mode I 
conditions using simple shear lag models, which incorporate the debond energy and interfacial 
friction as scalar parameters.  Quite simple models of reasonable accuracy are also now available 
for mode II and mixed mode conditions (Cox, 2004).  In contrast, little attention has been paid to 
the dynamic case. 
 Figure 2 compares experimental and theoretical stress fields (σ1 - σ2, where x1 and x2 are the 
in-plane coordinates) in a model planar fiber coupled by friction alone (the interface was initially 
not bonded) to a matrix (not shown) and subjected to a dynamic pulse load at the left end.  The 
experimental data were acquired with dynamic photoelasticity methods.  The calculations were per-
formed with finite element methods, assuming a con-stant friction stress, apart from a linear 
variation with shear displacement rate for small rates, which is necessary because the num-erical 
procedures do not converge if the friction changes sign as a step function.  The stress contours show 
regions, during loading and where the friction stress is saturated (constant), where they are not far 
from vertical, consistent with the simplified Lamé-like fields of a shear lag model.  More complex 
behaviour is found approaching and during unloading (zones labeled “constant friction” and 
“unloading zone” in Fig. 2), where both experiment and model suggest, among other characteristics, 
instability or chaotic behaviour at the interface.  The instability is presumably related to that 
predicted for Coulomb friction laws (Adams, 1998; Cochard and Rice, 2000), but here the 
distinction arises that the friction is not related to the normal stress.  These results suggest that a 
fundamental difference exists between problems of uniform far-field loading, the case assumed in 

prior studies of instability at frictional interfaces, and time-varying loads; and that loading and 
unloading show distinct interfacial physics. 
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Figure 2.  Snap-shot of stress fields: dynamic fiber push-in. 
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 Other finite element calculations confirm that many of the characteristics of pullout/push-in 
problems are well approximated by Lamé-like solutions, at least in the case that friction is assumed 
to be of uniform magnitude (Sridhar et al., 2003).  Such analytical solutions have led to some 
interesting results that are not easily seen in numerical work, where the strong nonlinearity 
whenever friction changes sign causes difficulty.  Behaviour is much richer than in the 
corresponding static loading case (Nikitin and Tyurekhodgaev, 1990; Sridhar et al., 2003).  Under 
linearly increasing end loads, zones of interfacial slip, slip-stick, and reverse slip are all possible, 

depending on the loading rate and the properties of the fiber and matrix.  Figure 3 illustrates the 
interfacial particle velocity jump for a case that includes reverse slip. 
  Another characteristic of interest is the stiffness of the response of the end-point 
displacement to dynamic loading.  For linearly increasing loading, inertial effects increase the 
effective stiffness; but if loading stops increasing and is held constant, the momentum of the fiber 
continues to displace the fiber end and the final displacement is larger than for static loading.  
Estimates show that such inertial effects could significantly modify crack bridging laws and 
therefore the dynamic propagation of cracks bridged by fibers (Cox et al., 2001). 

3 LARGE SCALE BRIDGING EFFECTS 
Beam theory methods can provide accurate solutions for many aspects of delamination fracture in 
thin, long specimens (Freund, 1993; Hellan, 1978; Kanninen, 1974; Suo et al., 1992).  When long 
zones of crack bridging are present in static cracks, beam solutions show an oscillatory behaviour, 
reminiscent of a beam on a Winkler foundation (Massabò and Cox, 2001).  The oscillations can 
result in closure of the crack tip after some crack growth and divergence of the critical load in mode 
I (Fig. 4a).  The same tendency prevails in solutions for mixed mode delamination, so that the crack 
tip conditions are driven towards mode II (assuming that the crack is not deflected out of the 
delamination plane) (Massabò and Cox, 2001).  Thus friction effects extending over long domains 
of the crack wake will be central to crack propagation in structures with through-thickness 
reinforcement.  In the dynamic regime, different domains of oscillatory and non-oscillatory 
solutions arise, depending on the stiffness, S, of the bridging mechanism and the crack velocity 
(Fig. 4b) (Sridhar et al., 2002). 
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Figure 3.  Particle velocity variations in a pullout case: slip and reverse slip zones under linearly 
increasing end load (Sridhar et al., 2003).
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Features of the bridging traction law, including its initial slope, peak, and total area (work of 
rupture) establish length scales that control fracture (Bao and Suo, 1992; Cox and Marshall, 1994; 
Massabò and Cox, 1999; Rose, 1987).  One length scale is proportional to the length of the bridging 
zone when the critical condition for bridging ligament failure has been reached.  Beam solutions for 

a wedge loaded DCB specimen show that, as the crack velocity increases, the zone length falls 
continuously (Sridhar et al., 2002).  Figure 5 shows this effect, with the zone length, A, normalized 
by its length for zero velocity and vanishing initial bridging stiffness (B in Fig. 5), which is 
controlled by the static bridging length scale.  (The zone length is not zero as B → 0, but becomes 
determined by the location of the critical displacement for an unbridged crack profile.)   The 
decrease with velocity is caused by the increasing dominance of kinetic energy, which overcomes 
the bridging tractions to define the crack profile independently of the bridging effect or the intrinsic 
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Fig. 4.  Large scale bridging effects: (a) closure of crack tip in static mode I loading; and (b) oscillatory 
nature of dynamic solutions. 
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fracture energy; and the critical crack displacement is attained closer to the crack tip, as inertial 
resistance supports closer penetration of the wedge towards the crack tip.  Consistently, bridging 
effects have a significant fractional effect on the critical load for wedge propagation only at 
moderate crack velocities, less than ~ 0.2cR, where cR is the Rayleigh wave velocity (Sridhar et al., 
2002).  However, in this regime they are dominant.  

4 MULTIPLE DELAMINATION PROBLEMS 
Experiment shows that dynamic delamination generally results in multiple cracks, yet, apart from 
studies of buckling problems, surprisingly few studies exist of the mechanics of multiply cracked 
beams.  Here some highlights of recent work for static loading are summarized.  Consider a 
homogeneous, isotropic beam, with two cracks of arbitrary length and location in the vertical 
direction, subject to a static force P (Fig. 6a).  Euler-Bernoulli beam theory shows that one crack 
can cause either shielding or amplification of the energy release rate, G, for the other.  Fig. 6b 
shows how GL for the lower crack (G normalized by its value in the absence of the upper crack) 
changes when the length of the upper crack varies, for one choice of crack locations.  The different 
curves represent different levels of approximation in dealing with possible interpenetration of 
sublaminates, which can arise in this problem in the absence of opposing crack surface tractions.  

Friction is not included.  For the case shown, when the upper crack is longer (left side of the 
diagram), strong amplification occurs; when it is shorter (right side), amplification occurs but is 
weak.  (The coincidence of all curves on the right side implies the absence of interpenetration.)  A 
jump in GL occurs when the cracks are of equal length.  
Figure 6c maps regions of amplification and shielding for different heights of the two cracks in the 
beam.  If the positions fall in the lower left regions, e.g., point (a), then GL will always be amplified; 
if they fall in the shaded region, point (b), there will be a mixture of amplification and shielding 
depending on the relative lengths of the cracks; and if the positions fall in the upper region, point 
(c), then GL will always be reduced. 

When the cracks have similar lengths, beam segment 1 becomes stocky and the validity of 
Euler-Bernoulli beam theory is questionable.  Fig. 7 compares results of finite element calculations 
with beam theory results for a typical configuration.  Beam theory works remarkably well over the 
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Fig. 5.  Reduction of the bridging zone length with crack velocity in a wedge loaded DCB specimen. 
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entire range of crack lengths.  When the two crack tips are close, the relative error increases, but the 
qualitative behavior remains similar.  The error is mainly due to the assumption of built-in beams, 
i.e., φ1= φ2=φ0 at aU where φi is the bending rotation, which neglects the different root rotations at 
the crack tips, which cause different degrees of contact. 

Study of the macrostructural response of the two-crack system has also revealed that 1) for 
certain crack geometries, there is a local strain hardening behavior due to the shielding effect that 
leads to hyper-strength phenomena, while for other geometries, there is crack pull-along, in which 
one crack will begin to propagate and later draw the second crack along behind; and 2) jumps in the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 /Ua h

U
2

Eh
P

G

0

200

400

600

800

1000

0 1 2 3 4 5 6 7 8

U La a< beam
theory 

FEM

 
Fig. 7.  Comparison of beam theory and FEM. 
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Fig. 6  (a) Cantilever beam with two cracks.  (b) G for one crack as other varies in length.  (c) Map of 
shielding and amplification. 
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energy release rate (Fig. 6b) can also be seen in the quasi-static load deflection curve as local snap-
back instabilities.  Extension of this type of model to systems of more than two cracks and to 
incorporate long-range friction effects will be reported elsewhere.  Both generalizations 
significantly enrich the nature of the possible solutions.  The generalized models are especially 
relevant to understanding delamination response to impact, among other applications. 

5 CONCLUSIONS 
Certain problems in dynamic damage evolution can be well aproximated by beam and shear 
models.  Great challenges remain in understanding large scale friction, mixed mode fracture, and 
multiple delamination effects. 
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