1,287 research outputs found

    Flame Propagation of Pulverised Biomass Crop Residues and their Explosion Characteristics

    Get PDF
    Pulverised agricultural crop residues were investigated using the ISO 1 m3 turbulent explosion vessel. This was modified to enable the spherical flame propagation flame speed and the heat release rate in MW/m2 to be determined. From the turbulent flame speed, the laminar flame speed and laminar burning velocity and global heat release, MW/m2, were determined. In addition the equipment was used to determine the biomass explosibility, Kst (= dP/dtmaxV1/3), and the minimum explosion concentration (MEC). Two Pakistani crop residues bagasse (B) and wheat straw (WS) were investigated. Particle size distribution, elemental and proximate analysis and surface morphology for the raw powders and for their post explosion residues were carried out. It was found that these crop residues have explosibility characteristics comparable to wood biomass powders. MEC values as low as equivalence ratios of 0.18 to 0.3 were found which were lower than for gaseous hydrocarbons, but similar to other measurements for biomass using the Hartmann explosibility equipment. Peak turbulent flame speeds were measured at 3-4 m/s. There was a significant post explosion residue of unburned material which was shown to have an increase in char content relative to the raw biomass, while the volatile content was reduced. The BET surface area of the post explosion residue of bagasse was higher than that of the wheat straw residue, showing a higher release of volatiles for bagasse with a more porous char residue in the burnout indicating higher reactivity. These crop residues are a viable renewable fuel for existing coal power plants or as a basis for a new generation of small scale steam power generators in Pakistan

    Community Energy in the UK: The End or the Beginning of a Brighter Future?

    Get PDF
    In recent years, the future of the UK’s energy system has attracted growing involvement of local and communitybased projects for energy generation despite an unfavourable policy landscape. The purpose of this paper is to evaluate the impact of curtailment of renewables support mechanisms in 2015 on the development of UK’s Community Renewable Energy (CRE) sector. The approach involves analysis of an online survey and semi-structured interviews conducted between August and October 2016 among, community energy groups, community energy representatives and developers to explore their perspectives on future of community energy projects after the major reduction renewable support mechanisms. Furthermore, investigates key success factors, and perceived challenges for further development of these projects. Research has shown that UK’s community sector has evolved rapidly since 2008 and has seen considerable growth in 2014. The business models used by community energy projects, mostly depend on grants and public subsidies. Therefore, these projects have faced huge financial challenges since January 2015 with the reduction in public subsidies for renewable energy (e.g. FIT). This study has shown these reductions caused failure to many community-based renewable energy projects. This paper critically analyses the potential future development of the community renewable energy sector and furthermore, it focuses on new approaches that community energy groups can implement to maintain and develop further under the new policy regime. In conclusion, preliminary recommendations are suggested based on alternative business models and discuss alternative policy approaches for the future development of community renewable energy in the UK

    Migraine aura: retracting particle-like waves in weakly susceptible cortex

    Get PDF
    Cortical spreading depression (SD) has been suggested to underlie migraine aura. Despite a precise match in speed, the spatio-temporal patterns of SD and aura symptoms on the cortical surface ordinarily differ in aspects of size and shape. We show that this mismatch is reconciled by utilizing that both pattern types bifurcate from an instability point of generic reaction-diffusion models. To classify these spatio-temporal pattern we suggest a susceptibility scale having the value [sigma]=1 at the instability point. We predict that human cortex is only weakly susceptible to SD ([sigma]<1), and support this prediction by directly matching visual aura symptoms with anatomical landmarks using fMRI retinotopic mapping. We discuss the increased dynamical repertoire of cortical tissue close to [sigma]=1, in particular, the resulting implications on migraine pharmacology that is hitherto tested in the regime ([sigma]>>1), and potentially silent aura occurring below a second bifurcation point at [sigma]=0 on the susceptible scale

    Natural Splice Variant of MHC Class I Cytoplasmic Tail Enhances Dendritic Cell-Induced CD8+ T-Cell Responses and Boosts Anti-Tumor Immunity

    Get PDF
    Dendritic cell (DC)-mediated presentation of MHC class I (MHC-I)/peptide complexes is a crucial first step in the priming of CTL responses, and the cytoplasmic tail of MHC-I plays an important role in modulating this process. Several species express a splice variant of the MHC-I tail that deletes exon 7-encoding amino acids (Δ7), including a conserved serine phosphorylation site. Previously, it has been shown that Δ7 MHC-I molecules demonstrate extended DC surface half-lives, and that mice expressing Δ7-Kb generate significantly augmented CTL responses to viral challenge. Herein, we show that Δ7-Db-expressing DCs stimulated significantly more proliferation and much higher cytokine secretion by melanoma antigen-specific (Pmel-1) T cells. Moreover, in combination with adoptive Pmel-1 T-cell transfer, Δ7-Db DCs were superior to WT-Db DCs at stimulating anti-tumor responses against established B16 melanoma tumors, significantly extending mouse survival. Human DCs engineered to express Δ7-HLA-A*0201 showed similarly enhanced CTL stimulatory capacity. Further studies demonstrated impaired lateral membrane movement and clustering of human Δ7-MHC-I/peptide complexes, resulting in significantly increased bioavailability of MHC-I/peptide complexes for specific CD8+ T cells. Collectively, these data suggest that targeting exon 7-encoded MHC-I cytoplasmic determinants in DC vaccines has the potential to increase CD8+ T-cell stimulatory capacity and substantially improve their clinical efficacy
    corecore