265 research outputs found

    LU factorizations, q=0 limits, and p-adic interpretations of some q-hypergeometric orthogonal polynomials

    Full text link
    For little q-Jacobi polynomials and q-Hahn polynomials we give particular q-hypergeometric series representations in which the termwise q=0 limit can be taken. When rewritten in matrix form, these series representations can be viewed as LU factorizations. We develop a general theory of LU factorizations related to complete systems of orthogonal polynomials with discrete orthogonality relations which admit a dual system of orthogonal polynomials. For the q=0 orthogonal limit functions we discuss interpretations on p-adic spaces. In the little 0-Jacobi case we also discuss product formulas.Comment: changed title, references updated, minor changes matching the version to appear in Ramanujan J.; 22 p

    Measurement-induced Squeezing of a Bose-Einstein Condensate

    Full text link
    We discuss the dynamics of a Bose-Einstein condensate during its nondestructive imaging. A generalized Lindblad superoperator in the condensate master equation is used to include the effect of the measurement. A continuous imaging with a sufficiently high laser intensity progressively drives the quantum state of the condensate into number squeezed states. Observable consequences of such a measurement-induced squeezing are discussed.Comment: 4 pages, 2 figures, submitted to PR

    Jack superpolynomials with negative fractional parameter: clustering properties and super-Virasoro ideals

    Full text link
    The Jack polynomials P_\lambda^{(\alpha)} at \alpha=-(k+1)/(r-1) indexed by certain (k,r,N)-admissible partitions are known to span an ideal I^{(k,r)}_N of the space of symmetric functions in N variables. The ideal I^{(k,r)}_N is invariant under the action of certain differential operators which include half the Virasoro algebra. Moreover, the Jack polynomials in I^{(k,r)}_N admit clusters of size at most k: they vanish when k+1 of their variables are identified, and they do not vanish when only k of them are identified. We generalize most of these properties to superspace using orthogonal eigenfunctions of the supersymmetric extension of the trigonometric Calogero-Moser-Sutherland model known as Jack superpolynomials. In particular, we show that the Jack superpolynomials P_{\Lambda}^{(\alpha)} at \alpha=-(k+1)/(r-1) indexed by certain (k,r,N)-admissible superpartitions span an ideal {\mathcal I}^{(k,r)}_N of the space of symmetric polynomials in N commuting variables and N anticommuting variables. We prove that the ideal {\mathcal I}^{(k,r)}_N is stable with respect to the action of the negative-half of the super-Virasoro algebra. In addition, we show that the Jack superpolynomials in {\mathcal I}^{(k,r)}_N vanish when k+1 of their commuting variables are equal, and conjecture that they do not vanish when only k of them are identified. This allows us to conclude that the standard Jack polynomials with prescribed symmetry should satisfy similar clustering properties. Finally, we conjecture that the elements of {\mathcal I}^{(k,2)}_N provide a basis for the subspace of symmetric superpolynomials in N variables that vanish when k+1 commuting variables are set equal to each other.Comment: 36 pages; the main changes in v2 are : 1) in the introduction, we present exceptions to an often made statement concerning the clustering property of the ordinary Jack polynomials for (k,r,N)-admissible partitions (see Footnote 2); 2) Conjecture 14 is substantiated with the extensive computational evidence presented in the new appendix C; 3) the various tests supporting Conjecture 16 are reporte

    The Social Climbing Game

    Full text link
    The structure of a society depends, to some extent, on the incentives of the individuals they are composed of. We study a stylized model of this interplay, that suggests that the more individuals aim at climbing the social hierarchy, the more society's hierarchy gets strong. Such a dependence is sharp, in the sense that a persistent hierarchical order emerges abruptly when the preference for social status gets larger than a threshold. This phase transition has its origin in the fact that the presence of a well defined hierarchy allows agents to climb it, thus reinforcing it, whereas in a "disordered" society it is harder for agents to find out whom they should connect to in order to become more central. Interestingly, a social order emerges when agents strive harder to climb society and it results in a state of reduced social mobility, as a consequence of ergodicity breaking, where climbing is more difficult.Comment: 14 pages, 9 figure

    Theory of nonlinear Landau-Zener tunneling

    Full text link
    A nonlinear Landau-Zener model was proposed recently to describe, among a number of applications, the nonadiabatic transition of a Bose-Einstein condensate between Bloch bands. Numerical analysis revealed a striking phenomenon that tunneling occurs even in the adiabatic limit as the nonlinear parameter CC is above a critical value equal to the gap VV of avoided crossing of the two levels. In this paper, we present analytical results that give quantitative account of the breakdown of adiabaticity by mapping this quantum nonlinear model into a classical Josephson Hamiltonian. In the critical region, we find a power-law scaling of the nonadiabatic transition probability as a function of C/V1C/V-1 and α\alpha , the crossing rate of the energy levels. In the subcritical regime, the transition probability still follows an exponential law but with the exponent changed by the nonlinear effect. For C/V>>1C/V>>1, we find a near unit probability for the transition between the adiabatic levels for all values of the crossing rate.Comment: 9 figure

    Magnetic fields in protoplanetary disks

    Full text link
    Magnetic fields likely play a key role in the dynamics and evolution of protoplanetary discs. They have the potential to efficiently transport angular momentum by MHD turbulence or via the magnetocentrifugal acceleration of outflows from the disk surface, and magnetically-driven mixing has implications for disk chemistry and evolution of the grain population. However, the weak ionisation of protoplanetary discs means that magnetic fields may not be able to effectively couple to the matter. I present calculations of the ionisation equilibrium and magnetic diffusivity as a function of height from the disk midplane at radii of 1 and 5 AU. Dust grains tend to suppress magnetic coupling by soaking up electrons and ions from the gas phase and reducing the conductivity of the gas by many orders of magnitude. However, once grains have grown to a few microns in size their effect starts to wane and magnetic fields can begin to couple to the gas even at the disk midplane. Because ions are generally decoupled from the magnetic field by neutral collisions while electrons are not, the Hall effect tends to dominate the diffusion of the magnetic field when it is able to partially couple to the gas. For a standard population of 0.1 micron grains the active surface layers have a combined column of about 2 g/cm^2 at 1 AU; by the time grains have aggregated to 3 microns the active surface density is 80 g/cm^2. In the absence of grains, x-rays maintain magnetic coupling to 10% of the disk material at 1 AU (150 g/cm^2). At 5 AU the entire disk thickness becomes active once grains have aggregated to 1 micron in size.Comment: 11 pages, 11 figs, aastex.cls. Accepted for publication in Astrophysics & Space Science. v3 corrects bibliograph

    Semiparametric theory and empirical processes in causal inference

    Full text link
    In this paper we review important aspects of semiparametric theory and empirical processes that arise in causal inference problems. We begin with a brief introduction to the general problem of causal inference, and go on to discuss estimation and inference for causal effects under semiparametric models, which allow parts of the data-generating process to be unrestricted if they are not of particular interest (i.e., nuisance functions). These models are very useful in causal problems because the outcome process is often complex and difficult to model, and there may only be information available about the treatment process (at best). Semiparametric theory gives a framework for benchmarking efficiency and constructing estimators in such settings. In the second part of the paper we discuss empirical process theory, which provides powerful tools for understanding the asymptotic behavior of semiparametric estimators that depend on flexible nonparametric estimators of nuisance functions. These tools are crucial for incorporating machine learning and other modern methods into causal inference analyses. We conclude by examining related extensions and future directions for work in semiparametric causal inference

    Star and Planet Formation with ALMA: an Overview

    Full text link
    Submillimeter observations with ALMA will be the essential next step in our understanding of how stars and planets form. Key projects range from detailed imaging of the collapse of pre-stellar cores and measuring the accretion rate of matter onto deeply embedded protostars, to unravelling the chemistry and dynamics of high-mass star-forming clusters and high-spatial resolution studies of protoplanetary disks down to the 1 AU scale.Comment: Invited review, 8 pages, 5 figures; to appear in the proceedings of "Science with ALMA: a New Era for Astrophysics". Astrophysics & Space Science, in pres

    Distribution and biological role of the oligopeptide-binding protein (OppA) in Xanthomonas species

    Get PDF
    In this study we investigated the prevalence of the oppA gene, encoding the oligopeptide binding protein (OppA) of the major bacterial oligopeptide uptake system (Opp), in different species of the genus Xanthomonas. The oppA gene was detected in two Xanthomonas axonopodis strains among eight tested Xanthomonas species. The generation of an isogenic oppA-knockout derivative of the Xac 306 strain, showed that the OppA protein neither plays a relevant role in oligopeptide uptake nor contributes to the infectivity and multiplication of the bacterial strain in leaves of sweet orange (Citrus sinensis) and Rangpur lime (Citrus limonia). Taken together these results suggest that the oppA gene has a recent evolutionary history in the genus and does not contribute in the physiology or pathogenesis of X. axonopodis

    Auditory network connectivity in tinnitus patients: a resting-state fMRI study

    Get PDF
    Objective: Resting-state functional magnetic resonance imaging (fMRI) uncovers correlated activity between spatially distinct functionally related brain regions and offers clues about the integrity of functional brain circuits in people with chronic subjective tinnitus. We chose to investigate auditory network connectivity, adopting and extending previously used analyses methods to provide an independent evaluation of replicability. Design: Independent components analysis (ICA) was used to identify coherent patterns arising from spontaneous brain signals within the resting-state data. The auditory network component was extracted and evaluated. Bivariate and partial correlation analyses were performed on pre-defined regions of bilateral auditory cortex to assess functional connectivity. Study sample: Our design carefully matched participant groups for possible confounds, such as hearing status. Twelve patients (seven male, five female; mean age 66 years) all with chronic constant tinnitus and eleven controls (eight male, three female; mean age 68 years) took part. Results: No significant differences were found in auditory network connectivity between groups after correcting for multiple statistical comparisons in the analysis. This contradicts previous findings reporting reduced auditory network connectivity; albeit at a less stringent statistical threshold. Conclusions: Auditory network connectivity does not appear to be reliably altered by the experience of chronic subjective tinnitus
    corecore