537 research outputs found

    Phenotypic Analysis of the Plp-Deficient Mouse

    Get PDF
    The myelin proteolipid protein (Plp) gene encodes the major protein components of compact central nervous system myelin. Mutations of this gene lead to severe dysmyelinating disease and oligodendrocyte death suggesting roles for Plp gene products as vital structural components of compact myelin and as oligodendrocyte maturation or survival factors. The Plp gene knockout mouse was generated (Klugmann et al., 1997) to study the effects of loss of Plp gene function on oligodendrocyte development and myelination in the central nervous system. Surprisingly the Plp gene knockout mouse showed no gross evidence of dysmyelination but did develop a late onset phenotype associated with progressive axonal changes. This study characterised the phenotype of these mice and assessed the ability of Plp gene isoforms to modify the phenotype of Plp gene knockout mice by transgenic complementation. The Plp gene knockout mouse formed large volumes of myelin and maintained oligodendrocyte numbers into adulthood. However, in the central nervous system, myelin was ultrastructurally abnormal and a proportion of small diameter axons failed to acquire myelin sheaths. Axonal changes consisted of swollen and degenerate axons and were confined to myelinated regions of the central nervous system where small diameter fibres appeared to be preferentially affected. Transgenic complementation with constructs expressing all of the components of the Plp gene ameliorated the phenotype of the Plp gene knockout mouse demonstrating that these changes were the direct result of loss of Plp gene function. These results indicate that, although the Plp gene products play roles in initiating myelination and in stabilising myelin lamellae, they are not vital components for oligodendrocyte development or myelin formation. The development of axonal changes appears to depend on the presence of myelin and demonstrates a potential role for the Plp gene in axoglial interaction. In addition, the changes in the Plp gene knockout mouse highlight the increasingly recognised role of gene dosage in the pathogenesis of Plp gene-related disease

    On the future navigability of Arctic sea routes: high-resolution projections of the Arctic Ocean and sea ice

    Get PDF
    The rapid Arctic summer sea ice reduction in the last decade has lead to debates in the maritime industries on the possibility of an increase in cargo transportation in the region. Average sailing times on the North Sea Route along the Siberian Coast have fallen from 20 days in the 1990s to 11 days in 2012–2013, attributed to easing sea ice conditions along the Siberian coast. However, the economic risk of exploiting the Arctic shipping routes is substantial. Here a detailed high-resolution projection of ocean and sea ice to the end of the 21st century forced with the RCP8.5 IPCC emission scenario is used to examine navigability of the Arctic sea routes. In summer, opening of large areas of the Arctic Ocean previously covered by pack ice to the wind and surface waves leads to Arctic pack ice cover evolving into the Marginal Ice Zone. The emerging state of the Arctic Ocean features more fragmented thinner sea ice, stronger winds, ocean currents and waves. By the mid 21st century, summer season sailing times along the route via the North Pole are estimated to be 13–17 days, which could make this route as fast as the North Sea Route

    Global‐scale evaluation of coastal ocean alkalinity enhancement in a fully coupled Earth system model

    Get PDF
    The Paris Agreement plans for “net-zero” carbon dioxide (CO2) emissions during the second half of the 21st century. However, reducing emissions from some sectors is challenging, and “net-zero” permits carbon dioxide removal (CDR) activities. One CDR scheme is ocean alkalinity enhancement (OAE), which proposes dissolving basic minerals into seawater to increase its buffering capacity for CO2. While modeling studies have often investigated OAE at basin or global scale, some proposals focus on readily accessible coastal shelves, with TA added through the dissolution of seafloor olivine sands. Critically, by settling and dissolving sands on shallow seafloors, this retains the added TA in near-surface waters in direct contact with atmospheric CO2. To investigate this, we add dissolved TA at a rate of ∼29 Teq y−1 to the global shelves (<100m) of an Earth system model (UKESM1) running a high emissions scenario. As UKESM1 is fully coupled, wider effects of OAE-mediated increase in ocean CO2 uptake –e.g. atmospheric xCO2, air temperature and marine pH– are fully quantified. Applying OAE from 2020 to 2100 decreases atmospheric xCO2 ∼10 ppm, and increases air-to-sea CO2 uptake ∼8%. In-line with other studies, CO2 uptake per unit of TA added occurs at a rate of ∼0.8 mol C (mol TA)−1. Significantly for monitoring, advection of added TA results in ∼50% of CO2 uptake occurring remotely from OAE operations, and the model also exhibits noticeable land carbon reservoir changes. While practical uncertainties and model representation caveats remain, this analysis estimates the effectiveness of this specific OAE scheme to assist with net-zero planning

    On the origin of water masses in the Beaufort Gyre

    Get PDF
    Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(7), (2019): 4696-4709, doi: 10.1029/2019JC015022.The Beaufort Gyre is a key feature of the Arctic Ocean, acting as a reservoir for freshwater in the region. Depending on whether the prevailing atmospheric circulation in the Arctic is anticyclonic or cyclonic, either a net accumulation or release of freshwater occurs. The sources of freshwater to the Arctic Ocean are well established and include contributions from the North American and Eurasian Rivers, the Bering Strait Pacific water inflow, sea ice meltwater, and precipitation, but their contribution to the Beaufort Gyre freshwater accumulation varies with changes in the atmospheric circulation. Here we use a Lagrangian backward tracking technique in conjunction with the 1/12‐degree resolution Nucleus for European Modelling of the Ocean model to investigate how sources of freshwater to the Beaufort Gyre have changed in recent decades, focusing on increase in the Pacific water content in the gyre between the late 1980s and early 2000s. Using empirical orthogonal functions we analyze the change in the Arctic oceanic circulation that occurred between the 1980s and 2000s. We highlight a “waiting room” advective pathway that was present in the 1980s and provide evidence that this pathway was caused by a shift in the center of Ekman transport convergence in the Arctic. We discuss the role of these changes as a contributing factor to changes in the stratification, and hence potentially the biology, of the Beaufort Gyre region.The underpinning high‐resolution NEMO simulation was performed using the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk). ARIANE simulations were performed using the JASMIN data analysis environment (http://www.jasmin.ac.uk). Lagrangian analysis was carried out using computational tool ARIANE developed by B. Blanke and N. Grima. Arctic dynamic topography/geostrophic currents data were provided by the Centre for Polar Observation and Modelling, University College London (www.cpom.ucl.ac.uk/dynamic_topography; Armitage et al., 2016). The funding for A. Proshutinsky was provided by the NSF under grants supporting the Beaufort Gyre Observing System since 2003 (1845877, 1719280, 1604085) and by the Woods Hole Oceanographic Institution. Y. Aksenov was supported from the NERC Program “The North Atlantic Climate System Integrated Study (ACSIS), NE/N018044/1 and from the project “Advective pathways of nutrients and key ecological substances in the Arctic (APEAR)” NE/R012865/1, as a part of the joint UK/Germany “Changing Arctic Ocean” Programme. A. Yool and E. Popova were supported by NERC grants CLASS NE/R015953/1, and National Capability in Ocean Modelling. We acknowledge the FAMOS (http://web.whoi.edu/famos/) program for providing a framework for many fruitful discussions which thoroughly enhanced this work. Finally, we thank the two anonymous reviewers who greatly improved this work with their insightful input.2019-12-2

    Meridional ocean carbon transport

    Get PDF
    The ocean's ability to take up and store CO2 is a key factor for understanding past and future climate variability. However, qualitative and quantitative understanding of surface‐to‐interior pathways, and how the ocean circulation affects the CO2 uptake, is limited. Consequently, how changes in ocean circulation may influence carbon uptake and storage and therefore the future climate remains ambiguous. Here we quantify the roles played by ocean circulation and various water masses in the meridional redistribution of carbon. We do so by calculating streamfunctions defined in dissolved inorganic carbon (DIC) and latitude coordinates, using output from a coupled biogeochemical‐physical model. By further separating DIC into components originating from the solubility pump and a residual including the biological pump, air‐sea disequilibrium, and anthropogenic CO2, we are able to distinguish the dominant pathways of how carbon enters particular water masses. With this new tool, we show that the largest meridional carbon transport occurs in a pole‐to‐equator transport in the subtropical gyres in the upper ocean. We are able to show that this pole‐to‐equator DIC transport and the Atlantic meridional overturning circulation (AMOC)‐related DIC transport are mainly driven by the solubility pump. By contrast, the DIC transport associated with deep circulation, including that in Antarctic bottom water and Pacific deep water, is mostly driven by the biological pump. As these two pumps, as well as ocean circulation, are widely expected to be impacted by anthropogenic changes, these findings have implications for the future role of the ocean as a climate‐buffering carbon reservoir

    Ecosystem model intercomparison of under-ice and total primary production in the Arctic Ocean

    Get PDF
    Previous observational studies have found increasing primary production (PP) in response to declining sea ice cover in the Arctic Ocean. In this study, under-ice PP was assessed based on three coupled ice-ocean-ecosystem models participating in the Forum for Arctic Modeling and Observational Synthesis (FAMOS) project. All models showed good agreement with under-ice measurements of surface chlorophyll-a concentration and vertically integrated PP rates during the main under-ice production period, from mid-May to September. Further, modeled 30-year (1980–2009) mean values and spatial patterns of sea ice concentration compared well with remote sensing data. Under-ice PP was higher in the Arctic shelf seas than in the Arctic Basin, but ratios of under-ice PP over total PP were spatially correlated with annual mean sea ice concentration, with higher ratios in higher ice concentration regions. Decreases in sea ice from 1980 to 2009 were correlated significantly with increases in total PP and decreases in the under-ice PP/total PP ratio for most of the Arctic, but nonsignificantly related to under-ice PP, especially in marginal ice zones. Total PP within the Arctic Circle increased at an annual rate of between 3.2 and 8.0 Tg C/yr from 1980 to 2009. This increase in total PP was due mainly to a PP increase in open water, including increases in both open water area and PP rate per unit area, and therefore much stronger than the changes in under-ice PP. All models suggested that, on a pan-Arctic scale, the fraction of under-ice PP declined with declining sea ice cover over the last three decades

    Modeling submerged biofouled microplastics and their vertical trajectories

    Get PDF
    The fate of (micro)plastic particles in the open ocean is controlled by physical and biological processes. Here, we model the effects of biofouling on the subsurface vertical distribution of spherical, virtual plastic particles with radii of 0.01–1 mm. For the physics, four vertical velocity terms are included: advection, wind-driven mixing, tidally induced mixing, and the sinking velocity of the biofouled particle. For the biology, we simulate the attachment, growth and loss of algae on particles. We track 10,000 particles for one year in three different regions with distinct biological and physical properties: the low productivity region of the North Pacific Subtropical Gyre, the high productivity region of the Equatorial Pacific and the high mixing region of the Southern Ocean. The growth of biofilm mass in the euphotic zone and loss of mass below the euphotic zone result in the oscillatory behaviour of particles, where the larger (0.1–1.0 mm) particles have much shorter average oscillation lengths ( 5000 m). Our results show that the vertical movement of particles is mainly affected by physical (wind-induced mixing) processes within the mixed layer and biological (biofilm) dynamics below the mixed layer. Furthermore, positively buoyant particles with radii of 0.01–1.0 mm can sink far below the euphotic zone and mixed layer in regions with high near-surface mixing or high biological activity. This work can easily be coupled to other models to simulate open-ocean biofouling dynamics, in order to reach a better understanding of where ocean (micro)plastic ends up
    corecore