44 research outputs found

    Spatial interpolation enables normative data comparison in gaze-contingent microperimetry

    Get PDF
    Purpose: To demonstrate methods that enable visual field sensitivities to be compared with normative data without restriction to a fixed test pattern. Methods: Healthy participants (n = 60, age 19–50) undertook microperimetry (MAIA-2) using 237 spatially dense locations up to 13° eccentricity. Surfaces were fit to the mean, variance, and 5th percentile sensitivities. Goodness-of-fit was assessed by refitting the surfaces 1000 times to the dataset and comparing estimated and measured sensitivities at 50 randomly excluded locations. A leave-one-out method was used to compare individual data with the 5th percentile surface. We also considered cases with unknown fovea location by adding error sampled from the distribution of relative fovea–optic disc positions to the test locations and comparing shifted data to the fixed surface. Results: Root mean square (RMS) difference between estimated and measured sensitivities were less than 0.5 dB and less than 1.0 dB for the mean and 5th percentile surfaces, respectively. Root mean square differences were greater for the variance surface, median 1.4 dB, range 0.8 to 2.7 dB. Across all participants 3.9% (interquartile range, 1.8–8.9%) of sensitivities fell beneath the 5th percentile surface, close to the expected 5%. Positional error added to the test grid altered the number of locations falling beneath the 5th percentile surface by less than 1.3% in 95% of participants. Conclusions: Spatial interpolation of normative data enables comparison of sensitivity measurements from varied visual field locations. Conventional indices and probability maps familiar from standard automated perimetry can be produced. These methods may enhance the clinical use of microperimetry, especially in cases of nonfoveal fixation

    Central visual field sensitivity data from microperimetry with spatially dense sampling

    Get PDF
    Microperimetry, also referred to as fundus perimetry or fundus-driven perimetry, enables simultaneous acquisition of visual sensitivity and eye movement data. We present sensitivity data collected from 60 participants with normal vision using gaze-contingent perimetry. A custom designed spatially dense test grid was used to collect data across the visual field within 13° of fixation. These data are supplemental to a study in which we demonstrated a spatial interpolation method that facilitates comparison of acquired data from any set of spatial locations to normative data and thus screening of individuals with both normal and non-foveal fixation “Methods for normative data comparison in gaze-contigent microperimetry” (Denniss and Astle, 2016) [1]

    The consequences of strabismus and the benefits of adult strabismus surgery

    Get PDF
    Strabismus has a negative impact on patients’ lives regardless of their age. Factors such as self-esteem, relationships with others, education and the ability to find employment may all be negatively affected by strabismus. It is possible to correct strabismus in adulthood successfully; the chances of achieving good ocular alignment are high and the risks of intractable diplopia low. Successful surgery to realign the visual axes can improve visual function, and offer psychosocial benefits that ultimately improve quality of life. The potential benefits of strabismus surgery should be discussed with patients, regardless of their age or the age of onset of strabismus. This article reviews the impact of strabismus, focusing on the psychosocial consequences of the condition, of which many optometrists may be less aware

    Characterizing the role of disparity information in alleviating visual crowding

    Get PDF
    The ability to identify a target is reduced by the presence of nearby objects, a phenomenon known as visual crowding. The extent to which crowding impairs our perception is generally governed by the degree of similarity between a target stimulus and its surrounding flankers. Here we investigated the influence of disparity differences between target and flankers on crowding. Orientation discrimination thresholds for a parafoveal target were first measured when the target and flankers were presented at the same depth to establish a flanker separation that induced a significant elevation in threshold for each individual. Flankers were subsequently fixed at this spatial separation while the disparity of the flankers relative to the target was altered. For all participants, thresholds showed a systematic decrease as flanker-target disparity increased. The resulting tuning function was asymmetric: Crowding was lower when the target was perceived to be in front of the flankers rather than behind. A series of control experiments confirmed that these effects were driven by disparity, as opposed to other factors such as flanker-target separation in three-dimensional (3-D) space or monocular positional offsets used to create disparity. When flankers were distributed over a range of crossed and uncrossed disparities, such that the mean was in the plane of the target, there was an equivalent or greater release of crowding compared to when all flankers were presented at the maximum disparity of that range. Overall, our results suggest that depth cues can reduce the effects of visual crowding, and that this reduction is unlikely to be caused by grouping of flankers or positional shifts in the monocular image

    Central perimetric sensitivity estimates are directly influenced by the fixation target

    Get PDF
    Purpose: Perimetry is increasingly being used to measure sensitivity at central visual field locations. For many tasks, the central (0°, 0°) location is functionally the most important, however threshold estimates at this location may be affected by masking by the nearby spatial structure of the fixation target. We investigated this effect.Methods: First we retrospectively analysed microperimetry (MAIA-2; CenterVue, Padova, Italy) data from 60 healthy subjects, tested on a custom grid with 1° central spacing. We compared sensitivity at (0°, 0°) to the mean sensitivity at the eight adjacent locations. We then prospectively tested 15 further healthy subjects on the same instrument using a cross-shaped test pattern with 1° spacing. Testing was carried out with and without the central fixation target, and sensitivity estimates at (0°, 0°) were compared. We also compared sensitivity at (0°, 0°) to the mean of the adjacent four locations in each condition. Three subjects undertook 10 repeated tests with the fixation target in place to assess within-subject variability of the effect.Results: In the retrospective analysis, central sensitivity was median 2.8 dB lower (95% range 0.1–8.8 dB lower, p < 0.0001) than the mean of the adjacent locations. In the prospective study, central sensitivity was median 2.0 dB lower with the fixation target vs without (95% range 0.4–4.7 dB lower, p = 0.0011). With the fixation target in place central sensitivity was median 2.5 dB lower than mean sensitivity of adjacent locations (95% range 0.8–4.2 dB lower, p = 0.0007), whilst without the fixation target there was no difference (mean 0.4 dB lower, S.D. 0.9 dB, p = 0.15). These differences could not be explained by reduced fixation stability. Mean within subject standard deviation in the difference between central and adjacent locations' sensitivity was 1.84 dB for the repeated tests.Conclusions: Perimetric sensitivity estimates from the central (0°, 0°) location are, on-average, reduced by 2 to 3 dB, corresponding to a 60–100% increase in stimulus luminance at threshold. This effect can be explained by masking by the nearby fixation target. The considerable within- and between-subject variability in magnitude, and the unknown effects of disease may hamper attempts to compensate threshold estimates for this effect. Clinicians should interpret central perimetric sensitivity estimates with caution, especially in patients with reduced sensitivity due to disease

    The Effect of Aging on Crowded Letter Recognition in the Peripheral Visual Field

    Get PDF
    PURPOSE. Crowding describes the increased difficulty in identifying a target object when it is surrounded by nearby objects (flankers). A recent study investigated the effect of age on visual crowding and found equivocal results: Although crowded visual acuity was worse in older participants, crowding expressed as a ratio did not change with age. However, the spatial extent of crowding is a better index of crowding effects and remains unknown. In the present study, we used established psychophysical methods to characterize the effect of age on visual crowding (magnitude and extent) in a letter recognition task. METHODS. Letter recognition thresholds were determined for three different flanker separations in 54 adults (aged 18-76 years) with normal vision. Additionally, the spatial extent of crowding was established by measuring spacing thresholds: the flanker-to-target separation required to produce a given reduction in performance. Uncrowded visual acuity, crowded visual acuity, and spacing thresholds were expressed as a function of age, avoiding arbitrary categorization of young and old participants. RESULTS. Our results showed that uncrowded and crowded visual acuities do not change significantly as a function of age. Furthermore, spacing thresholds did not change with age and approximated Bouma&apos;s law (half eccentricity). CONCLUSIONS. These data show that crowding in adults is unaffected by senescence and provide additional evidence for distinct neural mechanisms mediating surround suppression and visual crowding, since the former shows a significant age effect. Finally, our data suggest that the well-documented age-related decline in peripheral reading ability is not due to agerelated changes in visual crowding

    Perceptual learning reduces crowding in amblyopia and in the normal periphery

    Get PDF
    Amblyopia is a developmental visual disorder of cortical origin, characterized by crowding and poor acuity in central vision of the affected eye. Crowding refers to the adverse effects of surrounding items on object identification, common only in normal peripheral but not central vision. We trained a group of adult human amblyopes on a crowded letter identification task to assess whether the crowding problem can be ameliorated. Letter size was fixed well above the acuity limit, and letter spacing was varied to obtain spacing thresholds for central target identification. Normally sighted observers practiced the same task in their lower peripheral visual field. Independent measures of acuity were taken in flanked and unflanked conditions before and after training to measure crowding ratios at three fixed letter separations. Practice improved the letter spacing thresholds of both groups on the training task, and crowding ratios were reduced after posttest. The reductions in crowding in amblyopes were associated with improvements in standard measures of visual acuity. Thus, perceptual learning reduced the deleterious effects of crowding in amblyopia and in the normal periphery. The results support the effectiveness of plasticity-based approaches for improving vision in adult amblyopes and suggest experience-dependent effects on the cortical substrates of crowding

    The effect of normal aging and age-related macular degeneration on perceptual learning

    Get PDF
    We investigated whether perceptual learning could be used to improve peripheral word identification speed. The relationship between the magnitude of learning and age was established in normal participants to determine whether perceptual learning effects are age invariant. We then investigated whether training could lead to improvements in patients with age-related macular degeneration (AMD). Twenty-eight participants with normal vision and five participants with AMD trained on a word identification task. They were required to identify three-letter words, presented 10° from fixation. To standardize crowding across each of the letters that made up the word, words were flanked laterally by randomly chosen letters. Word identification performance was measured psychophysically using a staircase procedure. Significant improvements in peripheral word identification speed were demonstrated following training (71% ± 18%). Initial task performance was correlated with age, with older participants having poorer performance. However, older adults learned more rapidly such that, following training, they reached the same level of performance as their younger counterparts. As a function of number of trials completed, patients with AMD learned at an equivalent rate as age-matched participants with normal vision. Improvements in word identification speed were maintained at least 6 months after training. We have demonstrated that temporal aspects of word recognition can be improved in peripheral vision with training across a range of ages and these learned improvements are relatively enduring. However, training targeted at other bottlenecks to peripheral reading ability, such as visual crowding, may need to be incorporated to optimize this approach

    Position matching between the visual fields in strabismus

    Get PDF
    The misalignment of visual input in strabismus disrupts positional judgments.We measured positional accuracy in the extrafoveal visual field (18–78 eccentricity) of a large group of strabismic subjects and a normal control group to identify positional distortions associated with the direction of strabismus. Subjects performed a free localization task in which targets were matched in opposite hemifields whilst fixating on a central cross. The constant horizontal error of each response was taken as a measure of accuracy, in addition to radial and angular error. In monocular conditions, all stimuli were viewed by one eye; thus, the error reflected spatial bias. In dichoptic conditions, the targets were seen by separate eyes; thus, the error reflected the perceived stimulus shift produced by ocular misalignment in addition to spatial bias. In both viewing conditions, both groups showed reliable overand underestimations of visual field position, here termed a compression of response coordinates. The normal group showed compression in the left periphery, regardless of eye of stimulation. The strabismic group showed a visual field-specific compression that was clearly associated with direction of strabismus. The variation in perceived shift of strabismic subjects was largely accounted for by the biases present in monocular viewing, suggesting that binocular correspondence was uniform in the tested region. The asymmetric strabismic compression could not be reproduced in normal subjects through prism viewing, and its presence across viewing conditions suggests a hemifield-specific change in spatial coding induced by long-standing ocular misalignment

    The Effect of Aging on Crowded Letter Recognition in the Peripheral Visual Field

    Get PDF
    Purpose.: Crowding describes the increased difficulty in identifying a target object when it is surrounded by nearby objects (flankers). A recent study investigated the effect of age on visual crowding and found equivocal results: Although crowded visual acuity was worse in older participants, crowding expressed as a ratio did not change with age. However, the spatial extent of crowding is a better index of crowding effects and remains unknown. In the present study, we used established psychophysical methods to characterize the effect of age on visual crowding (magnitude and extent) in a letter recognition task. Methods.: Letter recognition thresholds were determined for three different flanker separations in 54 adults (aged 18–76 years) with normal vision. Additionally, the spatial extent of crowding was established by measuring spacing thresholds: the flanker-to-target separation required to produce a given reduction in performance. Uncrowded visual acuity, crowded visual acuity, and spacing thresholds were expressed as a function of age, avoiding arbitrary categorization of young and old participants. Results.: Our results showed that uncrowded and crowded visual acuities do not change significantly as a function of age. Furthermore, spacing thresholds did not change with age and approximated Bouma's law (half eccentricity). Conclusions.: These data show that crowding in adults is unaffected by senescence and provide additional evidence for distinct neural mechanisms mediating surround suppression and visual crowding, since the former shows a significant age effect. Finally, our data suggest that the well-documented age-related decline in peripheral reading ability is not due to age-related changes in visual crowding
    corecore