2,035 research outputs found
Recommended from our members
Phytocannabinoids as novel therapeutic agents in CNS disorders
The Cannabis sativa herb contains over 100 phytocannabinoid (pCB) compounds and has been used for thousands of years for both recreational and medicinal purposes. In the past two decades, characterisation of the body's endogenous cannabinoid (CB) (endocannabinoid, eCB) system (ECS) has highlighted activation of central CB1 receptors by the major pCB, Δ9-tetrahydrocannabinol (Δ9-THC) as the primary mediator of the psychoactive, hyperphagic and some of the potentially therapeutic properties of ingested cannabis. Whilst Δ9-THC is the most prevalent and widely studied pCB, it is also the predominant psychotropic component of cannabis, a property that likely limits its widespread therapeutic use as an isolated agent. In this regard,
research focus has recently widened to include other pCBs including cannabidiol (CBD), cannabigerol (CBG), Δ9tetrahydrocannabivarin (Δ9-THCV) and cannabidivarin (CBDV), some of which show potential as therapeutic agents in preclinical models of CNS disease. Moreover, it is becoming evident that these non-Δ9-THC pCBs act at a wide range of pharmacological targets, not solely limited to CB receptors. Disorders that could be targeted include epilepsy, neurodegenerative diseases, affective disorders and the central modulation of feeding behaviour. Here, we review pCB effects in preclinical models of CNS disease and, where available, clinical trial data that support therapeutic effects. Such developments may soon yield the first non-Δ9-THC pCB-based medicines
The Influence of Publicized Suicides on Depressive Symptoms
The aim of the current study was to examine how media influences cognitions and emotions. It was hypothesized that those who viewed a media report on suicide would have higher levels of death thought accessibility, while also displaying a more negative mood. Gender differences were also considered. The study consisted of 71 participants, predominantly White (84.5%) with an average age of 19.93 (SD = 5.41). The design of the study was experimental in nature. Participants viewed either a neutral news report or a news report on suicide. After reading, participants completed a word completion task to measure death thought accessibility (Greenburg, Pyszczynski, Solomon, Simon, & Breus, 1994), and the Positive and Negative Affect Schedule (PANAS; Watson, Clark, & Tellegen, 1988). There was no significant evidence that media reports on suicide influence death thought accessibility or mood. Thus, further studies on long-term effects should be conducted to further explore terror management theory and depressive symptoms
Evidence against memorial facilitation and context-dependent memory effects through the chewing of gum
The experiment examined the prediction that chewing gum at learning and/or recall facilitated subsequent word recall. Chewing gum at learning significantly impaired recall, indicating that the chewing of gum has a detrimental impact upon initial word encoding. In addition, a context-dependent memory effect was reported for those participants who both learned and recalled in the absence of gum, however a context dependent effect was not found with chewing gum. The findings contradict previous research
Letters between Andrew L. Neff and William Kerr\u27s secretary
Letters concerning a position in the history department at Utah Agricultural College
Concert recording 2016-11-05
[Tracks 1-4]. Bassoon sonata no. 5 / Antoine Dard -- [Track 5]. Sonatine for bassoon and piano / Alexandre Tansman -- [Track 6]. Monolog for bassoon / Isang Yun -- [Tracks 7-9]. Concerto in F major / Carl Maria von Weber
Recommended from our members
Modeling of Cell Nuclear Mechanics: Classes, Components, and Applications
Cell nuclei are paramount for both cellular function and mechanical stability. These two roles of nuclei are intertwined as altered mechanical properties of nuclei are associated with altered cell behavior and disease. To further understand the mechanical properties of cell nuclei and guide future experiments, many investigators have turned to mechanical modeling. Here, we provide a comprehensive review of mechanical modeling of cell nuclei with an emphasis on the role of the nuclear lamina in hopes of spurring future growth of this field. The goal of this review is to provide an introduction to mechanical modeling techniques, highlight current applications to nuclear mechanics, and give insight into future directions of mechanical modeling. There are three main classes of mechanical models—schematic, continuum mechanics, and molecular dynamics—which provide unique advantages and limitations. Current experimental understanding of the roles of the cytoskeleton, the nuclear lamina, and the chromatin in nuclear mechanics provide the basis for how each component is subsequently treated in mechanical models. Modeling allows us to interpret assay-specific experimental results for key parameters and quantitatively predict emergent behaviors. This is specifically powerful when emergent phenomena, such as lamin-based strain stiffening, can be deduced from complimentary experimental techniques. Modeling differences in force application, geometry, or composition can additionally clarify seemingly conflicting experimental results. Using these approaches, mechanical models have informed our understanding of relevant biological processes such as migration, nuclear blebbing, nuclear rupture, and cell spreading and detachment. There remain many aspects of nuclear mechanics for which additional mechanical modeling could provide immediate insight. Although mechanical modeling of cell nuclei has been employed for over a decade, there are still relatively few models for any given biological phenomenon. This implies that an influx of research into this realm of the field has the potential to dramatically shape both future experiments and our current understanding of nuclear mechanics, function, and disease
Intestinal microbiota and their metabolic contribution to type 2 diabetes and obesity
Obesity and type 2 diabetes mellitus (T2DM) are common, chronic metabolic disorders with associated significant long-term health problems at global epidemic levels. It is recognised that gut microbiota play a central role in maintaining host homeostasis and through technological advances in both animal and human models it is becoming clear that gut microbiota are heavily involved in key pathophysiological roles in the aetiology and progression of both conditions. This review will focus on current knowledge regarding microbiota interactions with short chain fatty acids, the host inflammatory response, signaling pathways, integrity of the intestinal barrier, the interaction of the gut-brain axis and the subsequent impact on the metabolic health of the host
A review on gut microbiota: a central factor in the pathophysiology of obesity
Abstract Obesity and its complications constitute a substantial burden. Considerable published research describes the novel relationships between obesity and gut microbiota communities. It is becoming evident that microbiota behave in a pivotal role in their ability to influence homeostatic mechanisms either to the benefit or detriment of host health, the extent of which is not fully understood. A greater understanding of the contribution of gut microbiota towards host pathophysiology is revealing new therapeutic avenues to tackle the global obesity epidemic. This review focuses on causal relationships and associations with obesity, proposed central mechanisms encouraging the development of obesity and promising prospective methods for microbiota manipulation
Development of a Nanomanufacturing Process to Produce Atomically Thin Black Phosphorus
Atomically thin black phosphorus (phosphorene) has both unique and desirable properties that differ from bulk black phosphorus. Unlike graphene, phosphorene has a bandgap, which makes it potentially useful for applications in the next generation of transistors. Large-scale applications of phosphorene, like other 2D materials, are limited by current production methods. The most common method of making phosphorene is mechanical exfoliation, which can only produce small and irregular quantities. In this work we investigate a top-down method of producing phosphorene by using a scanning ultrafast laser to thin black phosphorus flakes. Because the bandgap of phosphorene increases as layers are removed, it is anticipated that the last few layers will be harder to remove using the laser than the upper layers. Hopefully with properly tuned laser parameters, all but the last layer can be removed. Using a custom laser machining setup, the effects of laser power, wavelength, and scanning speed on ablation phenomena are investigated. After laser processing, flakes are characterized using Raman spectroscopy and atomic force microscopy in order to determine the nature and thickness of exposed regions. Tests done at 400 nm wavelength showed removal of material with comparatively weaker Raman peaks in the exposed areas, indicative of thinning. Removal of material was observed at 800 nm and 1500 nm wavelengths, but absence of Raman peaks indicated that thinned regions had melted and recrystallized, becoming amorphous. The present work sets the foundation for future experiments to refine this process and further explore the physics governing the thinning phenomenon
- …