36 research outputs found

    3D GeoWall Analysis System for Shuttle External Tank Foreign Object Debris Events

    Get PDF
    An analytical, advanced imaging method has been developed for the initial monitoring and identification of foam debris and similar anomalies that occur post-launch in reference to the space shuttle s external tank (ET). Remote sensing technologies have been used to perform image enhancement and analysis on high-resolution, true-color images collected with the DCS 760 Kodak digital camera located in the right umbilical well of the space shuttle. Improvements to the camera, using filters, have added sharpness/definition to the image sets; however, image review/analysis of the ET has been limited by the fact that the images acquired by umbilical cameras during launch are two-dimensional, and are usually nonreferenceable between frames due to rotation translation of the ET as it falls away from the space shuttle. Use of stereo pairs of these images can enable strong visual indicators that can immediately portray depth perception of damaged areas or movement of fragments between frames is not perceivable in two-dimensional images. A stereoscopic image visualization system has been developed to allow 3D depth perception of stereo-aligned image pairs taken from in-flight umbilical and handheld digital shuttle cameras. This new system has been developed to augment and optimize existing 2D monitoring capabilities. Using this system, candidate sequential image pairs are identified for transformation into stereo viewing pairs. Image orientation is corrected using control points (similar points) between frames to place the two images in proper X-Y viewing perspective. The images are then imported into the WallView stereo viewing software package. The collected control points are used to generate a transformation equation that is used to re-project one image and effectively co-register it to the other image. The co-registered, oriented image pairs are imported into a WallView image set and are used as a 3D stereo analysis slide show. Multiple sequential image pairs can be used to allow forensic review of temporal phenomena between pairs. The observer, while wearing linear polarized glasses, is able to review image pairs in passive 3D stereo

    A decade of user operation on the macromolecular crystallography MAD beamline ID14-4 at the ESRF

    Get PDF
    The improvement of the X-ray beam quality achieved on ID14-4 by the installation of new X-ray optical elements is described

    The Clinical Utility of Cell-Free DNA Measurement in Differentiated Thyroid Cancer::A Systematic Review

    Get PDF
    BackgroundCell-free DNA (cfDNA) can be detected in the circulation of healthy individuals, but is found in higher concentrations in cancer patients. Furthermore, mutations in tumor cells can be identified in circulating DNA fragments. This has been the subject of significant interest in the field of cancer research, but little has been published in thyroid cancer.ObjectivesTo assess all available evidence on the use of circulating cfDNA in the diagnosis, management and surveillance of patients with differentiated thyroid cancer, and collate it into a systematic review to guide future research.MethodsA comprehensive literature search on the measurement of cfDNA in thyroid cancer was undertaken, and results from relevant studies collated into a systematic review.ResultsNine studies were identified, with varying methodologies and findings. Key techniques and findings are summarized.ConclusionThere is limited but promising evidence that somatic mutations in thyroid cancer can be detected in circulating cfDNA and are associated with more advanced disease. Further research is required to develop a clinically useful tool based on cfDNA to improve the management of thyroid cancers

    Unique properties of a subset of human pluripotent stem cells with high capacity for self-renewal.

    Get PDF
    Archetypal human pluripotent stem cells (hPSC) are widely considered to be equivalent in developmental status to mouse epiblast stem cells, which correspond to pluripotent cells at a late post-implantation stage of embryogenesis. Heterogeneity within hPSC cultures complicates this interspecies comparison. Here we show that a subpopulation of archetypal hPSC enriched for high self-renewal capacity (ESR) has distinct properties relative to the bulk of the population, including a cell cycle with a very low G1 fraction and a metabolomic profile that reflects a combination of oxidative phosphorylation and glycolysis. ESR cells are pluripotent and capable of differentiation into primordial germ cell-like cells. Global DNA methylation levels in the ESR subpopulation are lower than those in mouse epiblast stem cells. Chromatin accessibility analysis revealed a unique set of open chromatin sites in ESR cells. RNA-seq at the subpopulation and single cell levels shows that, unlike mouse epiblast stem cells, the ESR subset of hPSC displays no lineage priming, and that it can be clearly distinguished from gastrulating and extraembryonic cell populations in the primate embryo. ESR hPSC correspond to an earlier stage of post-implantation development than mouse epiblast stem cells

    Radiotherapy plus cisplatin or cetuximab in low-risk human papillomavirus-positive oropharyngeal cancer (De-ESCALaTE HPV):an open-label randomised controlled phase 3 trial

    Get PDF
    Background The incidence of human papillomavirus (HPV)-positive oropharyngeal cancer, a disease affecting younger patients, is rapidly increasing. Cetuximab, an epidermal growth factor receptor inhibitor, has been proposed for treatment de-escalation in this setting to reduce the toxicity of standard cisplatin treatment, but no randomised evidence exists for the efficacy of this strategy. Methods We did an open-label randomised controlled phase 3 trial at 32 head and neck treatment centres in Ireland, the Netherlands, and the UK, in patients aged 18 years or older with HPV-positive low-risk oropharyngeal cancer (non-smokers or lifetime smokers with a smoking history of <10 pack-years). Eligible patients were randomly assigned (1: 1) to receive, in addition to radiotherapy (70 Gy in 35 fractions), either intravenous cisplatin (100 mg/m(2) on days 1, 22, and 43 of radiotherapy) or intravenous cetuximab (400 mg/m(2) loading dose followed by seven weekly infusions of 250 mg/m(2)). The primary outcome was overall severe (grade 3-5) toxicity events at 24 months from the end of treatment. The primary outcome was assessed by intention-to-treat and per-protocol analyses. This trial is registered with the ISRCTN registry, number ISRCTN33522080. Findings Between Nov 12, 2012, and Oct 1, 2016, 334 patients were recruited (166 in the cisplatin group and 168 in the cetuximab group). Overall (acute and late) severe (grade 3-5) toxicity did not differ significantly between treatment groups at 24 months (mean number of events per patient 4.8 [95% CI 4.2-5.4] with cisplatin vs 4.8 [4.2-5.4] with cetuximab; p=0.98). At 24 months, overall all-grade toxicity did not differ significantly either (mean number of events per patient 29.2 [95% CI 27.3-31.0] with cisplatin vs 30.1 [28.3-31.9] with cetuximab; p=0.49). However, there was a significant difference between cisplatin and cetuximab in 2-year overall survival (97.5% vs 89.4%, hazard ratio 5.0 [95% CI 1.7-14.7]; p=0.001) and 2-year recurrence (6.0% vs 16.1%, 3.4 [1.6-7.2]; p=0.0007). Interpretation Compared with the standard cisplatin regimen, cetuximab showed no benefit in terms of reduced toxicity, but instead showed significant detriment in terms of tumour control. Cisplatin and radiotherapy should be used as the standard of care for HPV-positive low-risk patients who are able to tolerate cisplatin. Funding Cancer Research UK. Copyright (c) 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license

    Virtual Versus Light Microscopy Usage among Students: A Systematic Review and Meta-Analytic Evidence in Medical Education

    No full text
    Background: The usage of whole-slide images has recently been gaining a foothold in medical education, training, and diagnosis. Objectives: The first objective of the current study was to compare academic performance on virtual microscopy (VM) and light microscopy (LM) for learning pathology, anatomy, and histology in medical and dental students during the COVID-19 period. The second objective was to gather insight into various applications and usage of such technology for medical education. Materials and methods: Using the keywords “virtual microscopy” or “light microscopy” or “digital microscopy” and “medical” and “dental” students, databases (PubMed, Embase, Scopus, Cochrane, CINAHL, and Google Scholar) were searched. Hand searching and snowballing were also employed for article searching. After extracting the relevant data based on inclusion and execution criteria, the qualitative data were used for the systematic review and quantitative data were used for meta-analysis. The Newcastle Ottawa Scale (NOS) scale was used to assess the quality of the included studies. Additionally, we registered our systematic review protocol in the prospective register of systematic reviews (PROSPERO) with registration number CRD42020205583. Results: A total of 39 studies met the criteria to be included in the systematic review. Overall, results indicated a preference for this technology and better academic scores. Qualitative analyses reported improved academic scores, ease of use, and enhanced collaboration amongst students as the top advantages, whereas technical issues were a disadvantage. The performance comparison of virtual versus light microscopy meta-analysis included 19 studies. Most (10/39) studies were from medical universities in the USA. VM was mainly used for teaching pathology courses (25/39) at medical schools (30/39). Dental schools (10/39) have also reported using VM for teaching microscopy. The COVID-19 pandemic was responsible for the transition to VM use in 17/39 studies. The pooled effect size of 19 studies significantly demonstrated higher exam performance (SMD: 1.36 [95% CI: 0.75, 1.96], p p p p = 0.06), the result was insignificant. The overall analysis of 15 studies assessing exam performance showed significantly higher performance for both medical (SMD: 1.42 [95% CI: 0.59, 2.25], p p < 0.001). Conclusions: The results of qualitative and quantitative analyses show that VM technology and digitization of glass slides enhance the teaching and learning of microscopic aspects of disease. Additionally, the COVID-19 global health crisis has produced many challenges to overcome from a macroscopic to microscopic scale, for which modern virtual technology is the solution. Therefore, medical educators worldwide should incorporate newer teaching technologies in the curriculum for the success of the coming generation of health-care professionals
    corecore