273 research outputs found

    Hypoxia drives murine neutrophil protein scavenging to maintain central carbon metabolism

    Get PDF
    Limiting dysfunctional neutrophilic inflammation while preserving effective immunity requires a better understanding of the processes that dictate neutrophil function in the tissues. Quantitative mass-spectrometry identified how inflammatory murine neutrophils regulated expression of cell surface receptors, signal transduction networks, and metabolic machinery to shape neutrophil phenotypes in response to hypoxia. Through the tracing of labeled amino acids into metabolic enzymes, proinflammatory mediators, and granule proteins, we demonstrated that ongoing protein synthesis shapes the neutrophil proteome. To maintain energy supplies in the tissues, neutrophils consumed extracellular proteins to fuel central carbon metabolism. The physiological stresses of hypoxia and hypoglycemia, characteristic of inflamed tissues, promoted this extracellular protein scavenging with activation of the lysosomal compartment, further driving exploitation of the protein-rich inflammatory milieu. This study provides a comprehensive map of neutrophil proteomes, analysis of which has led to the identification of active catabolic and anabolic pathways that enable neutrophils to sustain synthetic and effector functions in the tissues

    HCMV pUL135 remodels the actin cytoskeleton to impair immune recognition of infected cells

    Get PDF
    Immune evasion genes help human cytomegalovirus (HCMV) establish lifelong persistence. Without immune pressure, laboratory-adapted HCMV strains have undergone genetic alterations. Among these, the deletion of the UL/b’ domain is associated with loss of virulence. In a screen of UL/b’, we identified pUL135 as a protein responsible for the characteristic cytopathic effect of clinical HCMV strains that also protected from natural killer (NK) and T cell attack. pUL135 interacted directly with abl interactor 1 (ABI1) and ABI2 to recruit the WAVE2 regulatory complex to the plasma membrane, remodel the actin cytoskeleton and dramatically reduce the efficiency of immune synapse (IS) formation. An intimate association between F-actin filaments in target cells and the IS was dispelled by pUL135 expression. Thus, F-actin in target cells plays a critical role in synaptogenesis, and this can be exploited by pathogens to protect against cytotoxic immune effector cells. An independent interaction between pUL135 and talin disrupted cell contacts with the extracellular matrix

    Variant rs10911021 that associates with coronary heart disease in type 2 diabetes, is associated with lower concentrations of circulating HDL cholesterol and large HDL particles but not with amino acids.

    Get PDF
    AIMS: An intergenic locus on chromosome 1 (lead SNP rs10911021) was previously associated with coronary heart disease (CHD) in type 2 diabetes (T2D). Using data from the UCLEB consortium we investigated the relationship between rs10911021 and CHD in T2D, whether rs10911021 was associated with levels of amino acids involved in the γ-glutamyl cycle or any conventional risk factors (CRFs) for CHD in the T2D participants. METHODS: Four UCLEB studies (n = 6531) had rs10911021 imputation, CHD in T2D, CRF and metabolomics data determined using a nuclear magnetic resonance based platform. RESULTS: The expected direction of effect between rs10911021 and CHD in T2D was observed (1377 no CHD/160 CHD; minor allele OR 0.80, 95 % CI 0.60-1.06) although this was not statistically significant (p = 0.13). No association between rs10911021 and CHD was seen in non-T2D participants (11218 no CHD/1274 CHD; minor allele OR 1.00 95 % CIs 0.92-1.10). In T2D participants, while no associations were observed between rs10911021 and the nine amino acids measured, rs10911021 was associated with HDL-cholesterol (p = 0.0005) but the minor "protective" allele was associated with lower levels (-0.034 mmol/l per allele). Focusing more closely on the HDL-cholesterol subclasses measured, we observed that rs10911021 was associated with six large HDL particle measures in T2D (all p < 0.001). No significant associations were seen in non-T2D subjects. CONCLUSIONS: Our findings are consistent with a true association between rs10911021 and CHD in T2D. The protective minor allele was associated with lower HDL-cholesterol and reductions in HDL particle traits. Our results indicate a complex relationship between rs10911021 and CHD in T2D

    Gingival Fibroblasts Display Reduced Adhesion and Spreading on Extracellular Matrix: A Possible Basis for Scarless Tissue Repair?

    Get PDF
    Unlike skin, oral gingiva do not scar in response to injury. The basis of this difference is likely to be revealed by comparing the responses of dermal and gingival fibroblasts to fibrogenic stimuli. Previously, we showed that, compared to dermal fibroblasts, gingival fibroblasts are less responsive to the potent pro-fibrotic cytokine TGFβ, due to a reduced production of endothelin-1 (ET-1). In this report, we show that, compared to dermal fibroblasts, human gingival fibroblasts show reduced expression of pro-adhesive mRNAs and proteins including integrins α2 and α4 and focal adhesion kinase (FAK). Consistent with these observations, gingival fibroblasts are less able to adhere to and spread on both fibronectin and type I collagen. Moreover, the enhanced production of ET-1 mRNA and protein in dermal fibroblasts is reduced by the FAK/src inhibitor PP2. Given our previous observations suggesting that fibrotic fibroblasts display elevated adhesive properties, our data suggest that scarring potential may be based, at least in part, on differences in adhesive properties among fibroblasts resident in connective tissue. Controlling adhesive properties may be of benefit in controlling scarring in response to tissue injury

    Lévy patterns in seabirds are multifaceted describing both spatial and temporal patterning

    Full text link
    BACKGROUND: The flight patterns of albatrosses and shearwaters have become a touchstone for much of Lévy flight research, spawning an extensive field of enquiry. There is now compelling evidence that the flight patterns of these seabirds would have been appreciated by Paul Lévy, the mathematician after whom Lévy flights are named. Here we show that Lévy patterns (here taken to mean spatial or temporal patterns characterized by distributions with power-law tails) are, in fact, multifaceted in shearwaters being evident in both spatial and temporal patterns of activity. RESULTS: We tested for Lévy patterns in the at-sea behaviours of two species of shearwater breeding in the North Atlantic Ocean (Calonectris borealis) and the Mediterranean sea (C. diomedea) during their incubating and chick-provisioning periods. We found that distributions of flight durations, on/in water durations and inter-dive time-intervals have power-law tails and so bear the hallmarks of Lévy patterns. CONCLUSIONS: The occurrence of these statistical laws is remarkable given that bird behaviours are strongly shaped by an individual’s motivational state and by complex environmental interactions. Our observations could take Lévy patterns as models of animal behaviour to a new level by going beyond the characterisation of spatial movements to characterise how different behaviours are interwoven throughout daily animal life

    Sixty-five common genetic variants and prediction of type 2 diabetes.

    Get PDF
    We developed a 65 type 2 diabetes (T2D) variant-weighted gene score to examine the impact on T2D risk assessment in a U.K.-based consortium of prospective studies, with subjects initially free from T2D (N = 13,294; 37.3% women; mean age 58.5 [38-99] years). We compared the performance of the gene score with the phenotypically derived Framingham Offspring Study T2D risk model and then the two in combination. Over the median 10 years of follow-up, 804 participants developed T2D. The odds ratio for T2D (top vs. bottom quintiles of gene score) was 2.70 (95% CI 2.12-3.43). With a 10% false-positive rate, the genetic score alone detected 19.9% incident cases, the Framingham risk model 30.7%, and together 37.3%. The respective area under the receiver operator characteristic curves were 0.60 (95% CI 0.58-0.62), 0.75 (95% CI 0.73 to 0.77), and 0.76 (95% CI 0.75 to 0.78). The combined risk score net reclassification improvement (NRI) was 8.1% (5.0 to 11.2; P = 3.31 × 10(-7)). While BMI stratification into tertiles influenced the NRI (BMI ≤24.5 kg/m(2), 27.6% [95% CI 17.7-37.5], P = 4.82 × 10(-8); 24.5-27.5 kg/m(2), 11.6% [95% CI 5.8-17.4], P = 9.88 × 10(-5); >27.5 kg/m(2), 2.6% [95% CI -1.4 to 6.6], P = 0.20), age categories did not. The addition of the gene score to a phenotypic risk model leads to a potentially clinically important improvement in discrimination of incident T2D
    corecore