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ORIGINAL INVESTIGATION
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Abstract 

Aims: An intergenic locus on chromosome 1 (lead SNP rs10911021) was previously associated with coronary heart 
disease (CHD) in type 2 diabetes (T2D). Using data from the UCLEB consortium we investigated the relationship 
between rs10911021 and CHD in T2D, whether rs10911021 was associated with levels of amino acids involved in the 
γ‑glutamyl cycle or any conventional risk factors (CRFs) for CHD in the T2D participants.

Methods: Four UCLEB studies (n = 6531) had rs10911021 imputation, CHD in T2D, CRF and metabolomics data 
determined using a nuclear magnetic resonance based platform.

Results: The expected direction of effect between rs10911021 and CHD in T2D was observed (1377 no CHD/160 
CHD; minor allele OR 0.80, 95 % CI 0.60–1.06) although this was not statistically significant (p = 0.13). No association 
between rs10911021 and CHD was seen in non‑T2D participants (11218 no CHD/1274 CHD; minor allele OR 1.00 95 % 
CIs 0.92–1.10). In T2D participants, while no associations were observed between rs10911021 and the nine amino 
acids measured, rs10911021 was associated with HDL‑cholesterol (p = 0.0005) but the minor “protective” allele was 
associated with lower levels (−0.034 mmol/l per allele). Focusing more closely on the HDL‑cholesterol subclasses 
measured, we observed that rs10911021 was associated with six large HDL particle measures in T2D (all p < 0.001). No 
significant associations were seen in non‑T2D subjects.

Conclusions: Our findings are consistent with a true association between rs10911021 and CHD in T2D. The protec‑
tive minor allele was associated with lower HDL‑cholesterol and reductions in HDL particle traits. Our results indicate a 
complex relationship between rs10911021 and CHD in T2D.
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Background
Data from observational studies has long shown that 
those with type 2 diabetes (T2D) are at an increased risk 
of developing coronary heart disease (CHD) [1]. Evidence 
from genetic studies suggests that this relationship is 
causal [2, 3]. As such, there is growing interest in factors 
which may promote a “pro-atherogenic” environment in 
diabetes. While the association of a number of genetic 
risk factors for CHD [4] and subclinical cardiovascular 
disease (CVD) [5] has been observed in diabetic popu-
lations, recently a risk locus not previously identified in 
the general population was found to be associated with 
CHD in T2D. This locus at chromosome 1q25, (lead SNP 
rs10911021), was found to be associated with CHD in 
diabetic individuals [6] (MAF =  0.29 in the CEU group 
of 1000 Genomes Phase 3). The minor allele had a pro-
tective effect and an OR of 0.74 (95 % CI 0.66–0.82, 1517 
CHD cases, 2671 controls). The authors also observed 
that the risk homozygote genotype of rs10911021 was 
associated with 32  % lower expression of the nearest 
downstream gene GLUL compared to the protective 
allele homozygote genotype in endothelial cells. GLUL 
encodes the enzyme glutamine-synthase, an enzyme 
which catalyses the conversion of glutamic acid to glu-
tamine. Furthermore, while no association between lev-
els of glutamic acid or glutamine and rs10911021 was 
observed, an association between the SNP and the ratio 
of pyroglutamic acid to glutamic acid was reported. Both 
metabolites are intermediates in the γ-glutamyl cycle. 
This cycle is involved in amino acid uptake and in the 
homeostasis of the anti-oxidant glutathione [7]. Thus, the 
authors hypothesised that the presence of the risk allele 
may result in a lesser availability of glutathione. Intracel-
lular glutathione is known to be lower in diabetic indi-
viduals [8].

The risk locus identified for CHD in T2D also falls close 
to a GWAS hit for high density lipoprotein cholesterol 
(HDL-C) levels, (lead SNP rs1689800) situated between 
the genes ZNF648 and LINC01344 [9]. However, the 
degree of linkage disequilibrium (LD) between the two 
lead SNPs was low (r2 =  0.03 and D’ =  0.22, calculated 
from the CEU group of 1000 Genomes pilot). While the 
minor allele of rs1689800 is associated with 0.01 mmol/l 
lower HDL-C in the general population, data from the 
Global Lipids Genetics Consortium did not identify 
an association between rs10911021 and HDL-C levels 
(p = 0.50) in the general population [10].

In this study we sought to confirm the reported associ-
ation between rs10911021 and CHD in T2D, and then to 
assess if this SNP was associated with amino acid levels 
as measured using a high-throughput nuclear magnetic 
resonance (NMR) metabolomics platform. Finally, we 
sought to assess whether rs10911021 was associated with 

any conventional risk factors (CRFs) for CHD in the dia-
betic state, including levels of HDL-C and related HDL 
particle traits as measured using the high-throughput 
NMR metabolomics platform.

Methods
UCLEB
The University College, London School of Hygiene and 
Tropical Medicine, Edinburgh and Bristol (UCLEB) Con-
sortium comprises 12 prospective studies, almost all 
participants of which are of white/European ethnicity. 
The consortium has been described in detail elsewhere 
[11]. Median follow-up was 10  years. Approximately 
21,000 participants included in the UCLEB studies were 
genotyped using the Metabochip. This platform has 
approximately 200,000 SNPs, designed to cover regions 
associated with cardio-metabolic disease. Imputation 
based on data from the 1000 Genomes European Ances-
try sample extended the SNP coverage to approximately 
one million SNPs (R2  ≥  0.8), including rs10911021 
(R2 = 0.95). CHD was defined as the occurrence of fatal 
CHD, non-fatal myocardial infarction or undergoing 
coronary artery bypass or angioplasty. Both rs10911021 
imputation and CHD outcome data were available for 
eight cohorts—British Regional Heart Study (BRHS), 
British Women’s Heart and Health Study (BWHHS), 
Caerphilly Prospective Study (CAPS), Edinburgh Artery 
Study (EAS), Edinburgh Type 2 Diabetes Study (ET2DS), 
English Longitudinal Study of Aging (ELSA), MRC 
National Survey of Health and Development (MRC1946) 
and Whitehall II (WHII). Metabolomics and rs10911021 
imputation data were available for four studies (BWHHS, 
ET2DS, MRC1946 and WHII). T2D was defined by self-
report, medical history review, taking glucose lower-
ing medication or a fasting glucose >7 mmol/l. The T2D 
group included only those with prevalent diabetes (either 
self-reported or clinically confirmed as described in [11]). 
Informed consent was obtained for all subjects included 
in UCLEB research. Written approval from individual 
Research Ethics Committees to use anonymised individ-
ual level data have been obtained by each participating 
study.

Metabolomics
Serum metabolic measures were quantified using a high-
throughput NMR metabolomics platform able to quan-
tify up to 233 metabolic measures representing a broad 
molecular signature of systemic metabolism [12, 13]. 
Multiple metabolic pathways are covered, including lipo-
protein lipids and lipid subclasses, fatty acids and fatty 
acid compositions, as well as amino acids and glycolysis 
precursors. Applications of this high-throughput metab-
olomics platform have recently been reviewed [12] and 
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details of the experimentation have been described else-
where [13, 14]. Fasting concentrations of nine amino acid 
measures and 53 HDL related traits were determined in 
all four studies with available genotyping/imputation and 
diabetes status data.

Statistical analysis
Calculations were performed to assess the power 
required to detect the effect found by Qi et al. [6] using 
the QUANTO software package [15]. From the UCLEB 
data available, three of the studies had a nested case–con-
trol design (BRHS, BWHSS and ELSA) while a fourth did 
not record the times of CHD events (WHII). Therefore, 
the relationship between rs10911021 and CHD in T2D 
in UCLEB was assessed using logistic regression adjusted 
for sex. All participants used in the CHD analysis were 
free of CHD at baseline. Statistical analysis for the 
UCLEB metabolomics was performed using R version 
3.2.1 [16]. All other analysis was performed using STATA 
[17]. Meta-analyses was performed using the R package 
“metafor” using either a fixed effects or random effects 
(DerSimonian Laird) model [18]. All metabolomics 
measures were adjusted for age, age2 and sex and an 
inverse rank transformation was used prior to association 
analysis [19]. This was carried out using a linear model, 
adjusted for lipid lowering medication use, in each cohort 
individually. Separate analysis was performed for those 
with and without prevalent T2D. The results from the 
different studies were then combined in a fixed-effects 
meta-analysis weighted by sample size. To account for 
multiple testing and the correlation between the metab-
olomic traits p values were adjusted using the false dis-
covery rate (FDR) from Benjamini-Hochberg-Yekutieli 

[20]. An FDR adjusted p value <0.05 was considered to 
be statistically significant. Conditional analysis with the 
nearby HDL GWAS hit was performed by including the 
lead SNP (rs1689800) in the linear model. To assess the 
number of independent effects observed we performed 
step-wise adjustment of the results whereby all of the 
statistically significant associations were re-tested with 
the metabolomics measure with the lowest p value used 
a covariate. Should measures remain statistically signifi-
cant, the process is repeated until none remain.

Results
Basic characteristics of UCLEB participants
Selected characteristic of the UCLEB participants, sepa-
rated by diabetes status, are shown in Table  1. Com-
pared to the non-T2D study population, the diabetes 
study population (which was heavily influenced by a sin-
gle study comprising just older people T2D, the ET2DS, 
n = 1066) had a higher BMI, higher triglycerides, higher 
blood pressure, fasting glucose, insulin and glycated hae-
moglobin. Conversely, the non-T2D participants had 
higher total cholesterol and higher HDL-C and low den-
sity lipoprotein cholesterol (LDL-C) compared to the 
T2D participants.

Rs10911021 and CHD in T2D
The SNP, rs10911021, had been imputed in eight of the 
UCLEB studies that also had data on diabetes status as 
shown in Table  2. The association between rs10911021 
and CHD in diabetic participants was directionally 
similar to that previously reported but not statisti-
cally significant, OR 0.80 (95 % CIs 0.60–1.06, p = 0.13, 
MAF =  0.26) for the minor allele. The results from the 

Table 1 Basic characteristics of UCLEB participants with and without T2D

Mean and standard deviation of each trait (where applicable) is shown in those with and without T2D. Results were adjusted for age and sex
a Variables were log transformed

Trait No-T2D participants T2D participants p value

n Trait n Trait

Age (years) 13,015 61.1 (6.0) 1803 61.3 (8.1) 0.32

Sex (percentage male) 8068 62.00 1053 58.4 % 0.003

BMI (kg/m2) 12,803 26.7 (4.3) 1747 28.6 (5.80) 1.346 × 10−36

Triglycerides (mmol/l)a 12,022 0.43 (0.55) 1563 0.67 (0.75) 8.461 × 10−33

Total Cholesterol (mmol/l) 12,736 6.28 (1.24) 1784 6.04 (1.65) 4.484 × 10−8

HDL‑cholesterol (mmol/l) 12,493 1.42 (0.38) 1757 1.25 (0.51) 2.114 × 10−34

LDL‑cholesterol (mmol/l) 12,385 4.00 (1.07) 1607 3.62 (1.43) 1.573 × 10−21

Systolic blood pressure (mmHg) 12,739 139.90 (22.80) 1783 148.00 (30.60) 1.650 × 10−23

Diastolic blood pressure (mmHg) 12,722 81.70 (12.90) 1782 84.40 (17.30) 3.716 × 10−9

Fasting glucose (mmol/l)a 12,741 1.69 (0.15) 1670 1.98 (0.19) 2.54 × 10−303

Insulin (µIU/ml)a 7732 1.89 (0.62) 456 2.50 (0.66) 1.686 × 10−80

Glycated haemoglobin (%) 8711 5.37 (0.65) 1807 6.80 (0.98) 8.14 × 10−265
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UCLEB studies were meta-analysed with the published 
data. Similar effect sizes were observed using both fixed 
effects and random effects models with both p val-
ues strongly statistically significant, OR 0.74, 95  % CIs 
0.68–0.82, p = 8.22 × 10−10 (Fig. 1) and OR 0.75 95 % CIs 
0.67–0.84, p =  1.61 ×  10−6, respectively. Heterogeneity 
between the studies was low (I2 = 18 %). No association 
between rs10911021 and CHD in those without T2D was 
observed, OR 1.00 (95 % CIs 0.92–1.10, MAF = 0.30) for 
the minor allele.

rs10911021 and the γ-glutamyl cycle in T2D
In order to investigate the relationship between 
rs10911021 and the γ-glutamyl cycle in T2D, we sought 
to determine whether this SNP was associated with levels 

of amino acids involved in the pathway. We analysed the 
relationship between rs10911021 and the levels of nine 
amino acids, which can be taken up into the cell via the 
γ-glutamyl pathway, determined using the NMR metab-
olomics platform. These included the metabolic inter-
mediate glutamine and glutathione constituent glycine. 
No association between any of the amino acid measure-
ments and rs10911021 in diabetic participants was found 
(Table 3). Similarly no association between the measures 
and rs10911021 was observed in those without T2D (data 
not shown).

rs10911021 and conventional risk factors for CHD and T2D
We then sought to investigate if there was an associa-
tion between rs10911021 and CRFs for CHD and T2D 

Table 2 Risk allele frequency of rs10911021 for UCLEB participants

Minor allele frequency RAF is shown separately for those who did and did not go on to develop CHD. n is shown in brackets. The odds ratio (OR) adjusted for sex for 
the association between rs10911021 and CHD in T2D is also shown with its 95 % confidence intervals (95 % CI)

BRHS BWHHS CAPS EAS ELSA ET2DS MRC1946 WHII Combined

No T2D

 MAF no 
CHD

0.30 (1544) 0.32 (1528) 0.31 (1022) 0.31 (553) 0.30 (1426) – 0.32 (2294) 0.31 (2851) 0.31 (8665)

 MAF CHD 0.30 (378) 0.31 (285) 0.28 (239) 0.29 (132) 0.29 (114) – 0.31 (65) 0.35 (161) 0.30 (1677)

 OR (95 % 
CI)

1.02 
(0.85–1.22)

1.01 
(0.79–1.28)

0.82 
(0.65–1.04)

0.90 
(0.67–1.23)

1.10 
(0.81–1.49)

– 1.00 
(0.68–1.47)

1.23 
(0.97–1.56)

1.00 
(0.92–1.10)

 p value 0.81 0.94 0.10 0.64 0.54 – 0.43 0.09 0.93

T2D

 MAF no 
CHD

0.31 (190) 0.34 (94) 0.30 (20) 0.23 (46) 0.32 (160) 0.30 (793) 0.28 (45) 0.31 (29) 0.30 (1377)

 MAF CHD 0.18 (72) 0.20 (13) 0.29 (16) 0.24 (13) 0.29 (7) 0.32 (31) 0.40 (5) 0.30 (3) 0.26 (160)

 OR (95 % 
CI)

0.44 
(0.26–0.74)

0.48 
(0.17–1.33)

1.43 
(0.51–4.00)

1.05 
(0.36–3.03)

0.85 
(0.25–2.94)

1.35 (0.80–
2.33)

1.69 
(0.46–6.25)

1.01 
(0.52–1.96)

0.80 
(0.60–1.06)

 p value 2 × 10−3 0.16 0.49 0.95 0.80 0.26 0.43 0.87 0.13

Fig. 1 Forest plot of the meta‑analysis (fixed effects) of UCLEB studies and published data for the relationship between rs10911021 and coronary 
heart disease in diabetic individuals
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in UCLEB and whether this differed according to the 
presence of diabetes. As shown in Table 4, there was no 
association between any of the traits and rs10911021 for 
the non-T2D participants (p  >  0.05), while in diabetic 
participants, the only significant association observed 
was with HDL-C levels (p = 0.0005). Surprisingly, given 
it had previously been reported as the CHD protec-
tive allele, the minor allele of rs10911021 was associated 
with 0.034 mmol/l lower HDL-C levels. The major allele 
appears to show a recessive effect as shown in Table 5.

To further investigate the relationship between 
rs10911021, diabetes status and HDL, the association 

was examined with HDL traits measured by the NMR-
metabolomics platform. Using this technique, HDL par-
ticles can be separated into four subclasses (very large, 
large, medium and small) with twelve lipid composition 
traits measured in each subclass. Overall mean HDL 
particle diameter, concentrations of HDL-C and the sub-
fractions HDL2 and HDL3 and the triglyceride content of 
HDL particles were also measured. As shown in Table 6 
in diabetic participants, six metabolic measures, all relat-
ing to large HDL particles, showed an association with 
rs10911021 with an FDR adjusted p value <0.05. A fur-
ther 16 HDL metabolic measures had unadjusted p val-
ues below p = 0.05 (Fig. 2; Additional file 1: Table S3). By 
contrast, we found no association between rs10911021 
and any of the HDL measurements in non-T2D partici-
pants (p  >  0.05, Additional file  1: Table S4). Figure  3 is 
a representative forest plot of large HDL particle con-
centration showing a consistent lower level associated 
with the minor allele of rs10911021 diabetic participants 
in the four studies. Although metabolomics results are 
better interpreted as a profile rather than isolated asso-
ciations, when the trait with the lowest p value (free 
cholesterol in large HDL) was included in the model for 
the five other statistically significant traits no other asso-
ciations were observed (unadjusted p value >0.05, FDR p 
value = 1, Table 7). Therefore, we can conclude the asso-
ciations observed reflect a common underlying effect.

Finally we sought to determine if the suggestive asso-
ciations seen between rs10911021 and the large HDL 

Table 3 Relationship between  rs10911021 and  NMR-
determined amino acid measures

Beta-coefficient corresponding to the minor allele are shown, along with the 
standard error

Trait (mmol/l) Beta-coefficient (se) p value

Alanine −0.007 (0.07) 0.94

Glutamine 0.005 (0.08) 0.94

Glycine 0.003 (0.07) 0.97

Histidine 0.03 (0.07) 0.66

Isoleucine 0.02 (0.07) 0.74

Leucine −0.005 (0.07) 0.94

Valine 0.06 (0.07) 0.44

Phenylalanine 0.04 (0.07) 0.58

Tyrosine −0.03 (0.07) 0.65

Table 4 Relationship between  rs10911021 and  risk factors for  CHD and  T2D in  UCLEB in  participants with  and with-
out T2D

Beta-coefficient and standard error for each trait in those with and without T2D is shown. The beta effect relating to the minor allele is shown
a Variables were log transformed

Trait Number of non-T2D 
participants

Beta-coefficient 
in non-T2D partici-
pants (se)

p value Number of T2D  
participants

Beta- coefficient 
in T2D participants 
(se)

p value

BMI (kg/m2) 12,803 −0.032 (0.055) 0.56 1747 −0.055 (0.178) 0.76

Triglycerides (mmol/l)a 12,022 0.007 (0.007) 0.34 1563 0.030 (0.020) 0.87

Total cholesterol 
(mmol/l)

12,736 −0.011 (0.016) 0.25 1784 0.026 (0.043) 0.54

HDL cholesterol 
(mmol/l)

12,493 −0.001 (0.005) 0.86 1757 −0.034 (0.012) 0.0005

LDL cholesterol (mmol/l) 12,385 −0.018 (0.014) 0.21 1607 0.070 (0.037) 0.06

Systolic blood pressure 
(mmHg)

12,739 0.045 (0.298) 0.88 1783 0.056 (0.794) 0.94

Diastolic blood pressure 
(mmHg)

12,722 0.052 (0.170) 0.76 1782 −0.510 (0.432) 0.24

Fasting glucose 
(mmol/l)a

12,740 0.001 (0.002) 0.61 1670 −0.011 (0.009) 0.21

Insulin (µIU/ml)a 7732 −0.019 (0.011) 0.09 456 0.039 (0.063) 0.53

Glycated haemoglobin 
(%)

8711 −0.003 (0.008) 0.73 1317 0.032 (0.040) 0.42
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particle measures were independent of the nearby GWAS 
HDL hit (lead SNP rs1689800). We performed a condi-
tional analysis and found similar association between 
rs10911021 as in the unadjusted model (Table 6).

Discussion
The relationship between rs10911021 and CHD in T2D
In this study we observed a directionally consist-
ent protective association between the minor allele of 
rs10911021 and CHD in diabetic participants and con-
firmed the lack of an association between the variant 
and CHD in those without T2D. Although the protective 
effect was more modest than previously reported and 
was not statistically significant in our sample, the power 
calculation showed that to have more than 80  % power 
to detect the effect found by Qi et  al. (OR 0.74, for the 
minor allele), 237 CHD cases and 2038 CHD controls 
would be required. Here 160 cases and 1377 controls 
were analysed. Since the initial report of an association 
is often inflated by the “winners curse” effect, the lower 
risk estimate seen here is not unexpected. When the data 
presented here were meta-analysed with the previously 
published data using a fixed-effects meta-analysis, the p 
value was lower compared to the one found by Qi et al. 
indicating that our data support the original observation. 
A meta-analysis using a random effects model, to adjust 
for the observed heterogeneity between studies, was also 
performed although the p value was higher than in the 
original study. However, sensitivity analysis (Additional 
file 1: Tables S2, S3) shows that this is being driven by one 
study and as heterogeneity is relatively low between the 
studies, we are satisfied the fixed-effects model is suitable. 
In agreement with this, in the Look AHEAD cohort of 
overweight and obese individuals with T2D, rs10911021 
was found to be associated with CVD [21]. The SNP was 
also found to be associated with all-cause mortality (and 
cardiovascular mortality) in diabetic individuals [22].

The relationship between rs10911021 and the γ-glutamyl 
cycle
Qi et al. observed that subjects homozygous for the risk 
allele of rs10911021 had lower expression of the enzyme 
glutamine synthase (encoded by GLUL) in endothelial 
cells and a concomitant reduction in the ratio of pyro-
glutamic acid to glutamate, the substrate of the encoded 
glutamine synthase. The metabolomics platform data 
available did not directly measure either of these metabo-
lites, but we did not find an association between the SNP 
and any of the amino acids measured. Included among 
these were glycine (one of the three constituents of glu-
tathione along with cysteine and glutamate [23]) and glu-
tamine which is the product of the reaction catalysed by 
the gene product of GLUL. We did not have measures of 
cysteine and glutamate which are crucial to glutathione 
levels nor the ratio of pyro-glutamic acid to glutamic acid 
which was found to be associated with rs10911021 by Qi 
et al. [6]. Thus we cannot discount that rs10911021 affects 
the γ-glutamyl cycle, but if so our results indicate that it is 
not through limiting the availability of glycine or by inhib-
iting general amino acid translocation into the cell.

The relationship between rs10911021, HDL and T2D
There was no association between rs10911021 and any 
of the classical CHD risk factors in those without T2D, 
while in diabetic participants only an association with 
HDL-C was observed. This is contrary to what was 
observed in the Look AHEAD cohort, where rs10911021 
was not associated with any CRFs [21]. More in-depth 
analysis using the metabolomics data found there was an 
association between the SNP and six large-HDL traits, 
again only in diabetic participants. There were also sug-
gestive associations between the SNP and a further 16 
HDL traits, mostly relating to large and very large HDL 
particles. These associations were found to be independ-
ent of the nearby HDL GWAS hit marked by rs1689800.

The relationship between HDL-C and CHD remains 
unclear. Mendelian randomisation studies have failed to 
find a causal relationship between genetically low HDL-C 
and CHD [24, 25] and HDL-C raising therapies have 
failed to improve cardiovascular outcome [26]. This has 
shifted the focus from HDL-C concentration towards 
HDL particle subclasses. Increased levels of small HDL 
particles have been associated with increased risk of 
CHD but the converse is true of large HDL particles [27–
29]. In our analysis we found an association between the 
minor (previously identified as CHD “protective”) allele 
and lower levels of large HDL particle traits including 
concentration and cholesterol content, which is the oppo-
site of what might have be expected for a protective gene 
variant. A variant with a similar phenotype (HDL-raising 
but also associated with CHD) was recently identified in 

Table 5 Mean HDL-C level by rs10911021 in UCLEB partici-
pants with and without T2D

Mean and standard deviation are shown (adjusted for sex and study). C is the 
common, risk allele

rs10911021 Genotype p value

CC CT TT

T2D participants

 HDL‑C 
(mmol/l)

1.35 (0.35) 1.31 (0.32) 1.31 (0.33) 0.0005

 N 859 740 158

No T2D participants

 HDL‑C 
(mmol/l)

1.14 (0.35) 1.40 (0.36) 1.31 (0.33) 0.86

 N 5975 5400 1118
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the SCARB1 gene [30] providing further evidence that 
high HDL-C is not protective and may in some circum-
stances promote atherosclerosis. There may also be other 
factors to consider. A study of Japanese individuals with 
T2D found an interaction between a variant in a different 
gene enzyme involved in the γ-glutamyl pathway (cod-
ing for the γ -glutamyl-transferase enzyme) and HDL-C 
on the arterial stiffness marker brachial-ankle pulse wave 
velocity) [31]. This suggests that the γ-glutamyl pathway 
may interact with HDL metabolism in the diabetic state.

It is also unclear why rs10911021 should be associated 
with HDL-C and HDL particle traits in T2D but not in the 
general population. Diabetic dyslipidemia is characterised 
by high triglyceride levels, a high concentration of small 
dense LDL particles and a low HDL-C concentration [32]. 

Fig. 2 Relationship between HDL metabolomic traits and minor allele of rs10911021 in diabetic participants

Fig. 3 Forest plot for the meta‑analysis of large HDL particle concen‑
tration and minor allele of rs10911021 diabetic participants

Table 7 Metabolomic HDL traits with  an association with  rs10911021 in  diabetic participants, adjusted for  the trait 
with the lowest p value

Beta-effects corresponding to the minor allele are shown, along with the standard errors. FDR analysis was performed using the Benjamini-Hochberg-Yekutieli 
method. The trait with the lowest p value (free cholesterol in large HDL) was included in the model for the five other traits found to be associated with rs10911021 in 
diabetic individuals. No other association were observed

FDR false discovery rate

Trait (mol/l) Beta-effect (se) p value FDR adjusted p value

Concentration of large HDL particles 6.70 × 10−4 (0.01) 0.95 1

Total lipids in large HDL 5.28 × 10−4 (0.01) 0.96 1

Phospholipids in large HDL 4.38 × 10−3 (0.01) 0.74 1

Total cholesterol in large HDL 1.40 × 10−3 (0.01) 0.85 1

Cholesterol esters in large HDL 2.81 × 10−3 (0.01) 0.75 1
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This reduction in HDL-C concentration is mostly driven 
by a potentially pro-atherogenic reduction in the presence 
of larger HDL particles [28]. However, it may be that pres-
ence of the minor allele of rs10911021 leads to changes in 
HDL metabolism altering the composition of large HDL 
particles (such as the reduction in cholesterol content 
observed here). This could result in the particles them-
selves having a less atherogenic lipid composition com-
pared to carriers of the risk allele despite the reduction in 
overall large HDL particle concentration. Of course this 
pre-supposes that large HDL particles play a protective 
role and are not confounded by another causal factor.

Limitations
There are several limitations to our study. We were unable 
to fully investigate the hypothesis concerning the associa-
tion of rs10911021 with CHD in diabetic participants as 
we only had 60 % power to detect the effect size found by 
Qi et al. [6]. Data concerning the duration of diabetes and 
kidney complications, which can influence CHD risk in 
diabetic individuals, were not available and thus could not 
be taken account of in our analysis. Measures of metabo-
lites directly involved in the reported γ-glutamyl (gluta-
mate and pyroglutamic acid) association were not available 
and thus we could not fully investigate the hypothesis put 
forward by Qi et  al. In the metabolomics analysis, one 
study, ET2DS, contributed the majority of participants 
with T2D. All suggestive associations were lost when 
this study was left out of the meta-analysis as power was 
greatly reduced. While the results were adjusted for use of 
any lipid-lowering medications, data on the specific medi-
cation used were not available for analyses in UCLEB and 
this may have led to residual confounding. It has long been 
known that the relationship between a particular lipid-
lowering medication and HDL-C varies greatly. For exam-
ple, rosuvastatin and simvastatin have been found to have 
a much greater HDL-cholesterol raising ability compared 
to atorvastatin [33]. It is unknown how lipid-lowering 
medications may affect the HDL sub-fractions measured 
here. A study investigating the impact of statin use on 
the HDL traits measured here found that the concentra-
tion of very large HDL particles to increase and small HDL 
particles to decrease while the concentration of large and 
medium HDL particles was largely unaffected [34] but did 
not assess individual statins. Due to the very high propor-
tion of the T2D group that are on lipid-lowering medica-
tion we were unable to perform any meaningful analysis 
after exclusion of those on lipid-lowering medication.

Conclusions
In summary, our results support an association between 
rs10911021 and CHD in diabetic participants. However, 
our results suggest that rs10911021 does not impact 

upon CHD risk by limiting the availability of the glu-
tathione constituent glycine or by inhibiting general 
amino acid translocation into cells. However, we did 
observe an association between rs10911021 and classi-
cally measured HDL-C levels in T2D only. We also found 
an association between rs10911021 and a number of 
large HDL particle traits. Counterintuitively, the minor 
“protective” allele was associated with the atherogenic 
phenotype in both classically measured HDL and the 
metabolomics large HDL traits pointing to a potential 
novel mechanism through which HDL particles could 
promote atherosclerosis.
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