27 research outputs found

    The Flux Auto- and Cross-Correlation of the Lyman-alpha Forest. II. Modelling Anisotropies with Cosmological Hydrodynamic Simulations

    Full text link
    The isotropy of the Lyman-alpha forest in real-space uniquely provides a measurement of cosmic geometry at z > 2. The angular diameter distance for which the correlation function along the line of sight and in the transverse direction agree corresponds to the correct cosmological model. However, the Lyman-alpha forest is observed in redshift-space where distortions due to Hubble expansion, bulk flows, and thermal broadening introduce anisotropy. Similarly, a spectrograph's line spread function affects the autocorrelation and cross-correlation differently. In this the second paper of a series on using the Lyman-alpha forest observed in pairs of QSOs for a new application of the Alcock-Paczynski (AP) test, these anisotropies and related sources of potential systematic error are investigated with cosmological hydrodynamic simulations. Three prescriptions for galactic outflow were compared and found to have only a marginal effect on the Lyman-alpha flux correlation (which changed by at most 7% with use of the currently favored variable-momentum wind model vs. no winds at all). An approximate solution for obtaining the zero-lag cross-correlation corresponding to arbitrary spectral resolution directly from the zero-lag cross-correlation computed at full-resolution (good to within 2% at the scales of interest) is presented. Uncertainty in the observationally determined mean flux decrement of the Lyman-alpha forest was found to be the dominant source of systematic error; however, this is reduced significantly when considering correlation ratios. We describe a simple scheme for implementing our results, while mitigating systematic errors, in the context of a future application of the AP test.Comment: 20 page

    An HST/WFPC2 Snapshot Survey of 2MASS-Selected Red QSOs

    Get PDF
    Using simple infrared color selection, 2MASS has found a large number of red, previously unidentified, radio-quiet QSOs. Although missed by UV/optical surveys, the 2MASS QSOs have K-band luminosities that are comparable to "classical" QSOs. This suggests the possible discovery of a previously predicted large population of dust-obscured radio-quiet QSOs. We present the results of an imaging survey of 29 2MASS QSOs observed with WFPC2 onboard the Hubble Space Telescope. I-band images, which benefit from the relative faintness of the nuclei at optical wavelengths, are used to characterize the host galaxies, measure the nuclear contribution to the total observed I-band emission, and to survey the surrounding environments. The 2MASS QSOs are found to lie in galaxies with a variety of morphologies, luminosities, and dynamical states, not unlike those hosting radio-quiet PG QSOs. Our analysis suggests that the extraordinary red colors of the 2MASS QSOs are caused by extinction of an otherwise typical QSO spectrum due to dust near the nucleus.Comment: 23 pages including 9 figures and 7 tables, accepted for publication in ApJ, higher resolution HST images at: http://shapley.as.arizona.edu/~amarble/papers/twomq

    Re-examining High Abundance SDSS Mass-Metallicity Outliers: High N/O, Evolved Wolf-Rayet Galaxies?

    Full text link
    We present new MMT spectroscopic observations of four dwarf galaxies representative of a larger sample observed by the Sloan Digital Sky Survey (SDSS) and identified by Peeples et al. (2008) as low-mass, high oxygen abundance outliers from the mass-metallicity relation. Peeples et al. (2008) showed that these four objects (with metallicity estimates of 8.5 =< 12 + log(O/H) =< 8.8) have oxygen abundance offsets of 0.4-0.6 dex from the M_B luminosity-metallicity relation. Our new observations extend the wavelength coverage to include the [OII] 3726,3729 doublet, which adds leverage in oxygen abundance estimates and allows measurements of N/O ratios. All four spectra are low excitation, with relatively high N/O ratios (N/O >~ 0.10), each of which tend to bias estimates based on strong emission lines toward high oxygen abundances. These spectra all fall in a regime where the "standard" strong line methods for metallicity determinations are not well calibrated either empirically or by photoionization modeling. By comparing our spectra directly to photoionization models, we estimate oxygen abundances in the range of 7.9 =< 12 + log(O/H) =< 8.4, consistent with the scatter of the mass-metallicity relation. We discuss the physical nature of these galaxies that leads to their unusual spectra (and previous classification as outliers), finding their low excitation, elevated N/O, and strong Balmer absorption are consistent with the properties expected from galaxies evolving past the "Wolf-Rayet galaxy" phase. We compare our results to the "main" sample of Peeples et al. (2008) and conclude that they are outliers primarily due to enrichment of nitrogen relative to oxygen, and not due to unusually high oxygen abundances for their masses or luminosities.Comment: 38 pages, 10 figures, accepted to Ap

    21-cm synthesis observations of VIRGOHI 21 - a possible dark galaxy in the Virgo Cluster

    Full text link
    Many observations indicate that dark matter dominates the extra-galactic Universe, yet no totally dark structure of galactic proportions has ever been convincingly identified. Previously we have suggested that VIRGOHI 21, a 21-cm source we found in the Virgo Cluster using Jodrell Bank, was a possible dark galaxy because of its broad line-width (~200 km/s) unaccompanied by any visible gravitational source to account for it. We have now imaged VIRGOHI 21 in the neutral-hydrogen line and find what could be a dark, edge-on, spinning disk with the mass and diameter of a typical spiral galaxy. Moreover, VIRGOHI 21 has unquestionably been involved in an interaction with NGC 4254, a luminous spiral with an odd one-armed morphology, but lacking the massive interactor normally linked with such a feature. Numerical models of NGC 4254 call for a close interaction ~10^8 years ago with a perturber of ~10^11 solar masses. This we take as additional evidence for the massive nature of VIRGOHI 21 as there does not appear to be any other viable candidate. We have also used the Hubble Space Telescope to search for stars associated with the HI and find none down to an I band surface brightness limit of 31.1 +/- 0.2 mag/sq. arcsec.Comment: 8 pages, accepted to ApJ, uses emulateapj.cls. Mpeg animation (Fig. 2) available at ftp://ftp.naic.edu/pub/publications/minchin/video2.mp

    The Flux Auto- and Cross-Correlation of the Lyman-alpha Forest. I. Spectroscopy of QSO Pairs with Arcminute Separations and Similar Redshifts

    Full text link
    The Lyman-alpha forest has opened a new redshift regime for cosmological investigation. At z > 2 it provides a unique probe of cosmic geometry and an independent constraint on dark energy that is not subject to standard candle or ruler assumptions. In Paper I of this series on using the Lyman-alpha forest observed in pairs of QSOs for a new application of the Alcock-Paczynski test, we present and discuss the results of a campaign to obtain moderate-resolution spectroscopy (FWHM ~ 2.5 Angstroms) of the Lyman-alpha forest in pairs of QSOs with small redshift differences (Delta z 2.2) and arcminute separations (< 5'). This data set, composed of seven individual QSOs, 35 pairs, and one triplet, is also well-suited for future investigations of the coherence of Lyman-alpha absorbers on ~ 1 Mpc transverse scales and the transverse proximity effect. We note seven revisions for previously published QSO identifications and/or redshifts.Comment: 20 page
    corecore