9,123 research outputs found

    Design and Development of an Affordable Haptic Robot with Force-Feedback and Compliant Actuation to Improve Therapy for Patients with Severe Hemiparesis

    Get PDF
    The study describes the design and development of a single degree-of-freedom haptic robot, Haptic Theradrive, for post-stroke arm rehabilitation for in-home and clinical use. The robot overcomes many of the weaknesses of its predecessor, the TheraDrive system, that used a Logitech steering wheel as the haptic interface for rehabilitation. Although the original TheraDrive system showed success in a pilot study, its wheel was not able to withstand the rigors of use. A new haptic robot was developed that functions as a drop-in replacement for the Logitech wheel. The new robot can apply larger forces in interacting with the patient, thereby extending the functionality of the system to accommodate low-functioning patients. A new software suite offers appreciably more options for tailored and tuned rehabilitation therapies. In addition to describing the design of the hardware and software, the paper presents the results of simulation and experimental case studies examining the system\u27s performance and usability

    Giant Planet Occurrence in the Stellar Mass-Metallicity Plane

    Get PDF
    Correlations between stellar properties and the occurrence rate of exoplanets can be used to inform the target selection of future planet search efforts and provide valuable clues about the planet formation process. We analyze a sample of 1194 stars drawn from the California Planet Survey targets to determine the empirical functional form describing the likelihood of a star harboring a giant planet as a function of its mass and metallicity. Our stellar sample ranges from M dwarfs with masses as low as 0.2 Msun to intermediate-mass subgiants with masses as high as 1.9 Msun. In agreement with previous studies, our sample exhibits a planet-metallicity correlation at all stellar masses; the fraction of stars that harbor giant planets scales as f \propto 10^{1.2 [Fe/H]}. We can rule out a flat metallicity relationship among our evolved stars (at 98% confidence), which argues that the high metallicities of stars with planets are not likely due to convective envelope "pollution." Our data also rule out a constant planet occurrence rate for [Fe/H]< 0, indicating that giant planets continue to become rarer at sub-Solar metallicities. We also find that planet occurrence increases with stellar mass (f \propto Mstar), characterized by a rise from 3.5% around M dwarfs (0.5 Msun) to 14% around A stars (2 Msun), at Solar metallicity. We argue that the correlation between stellar properties and giant planet occurrence is strong supporting evidence of the core accretion model of planet formation.Comment: Fixed minor typos, modified the last paragraph of Section

    Kepler-18b,c, and d: A System of Three Planets Confirmed by Transit Timing Variations, Light Curve Validation, Warm-Spitzer Photometry, and Radial Velocity Measurements

    Get PDF
    We report the detection of three transiting planets around a Sun-like star, which we designate Kepler-18. The transit signals were detected in photometric data from the Kepler satellite, and were confirmed to arise from planets using a combination of large transit-timing variations (TTVs), radial velocity variations, Warm-Spitzer observations, and statistical analysis of false-positive probabilities. The Kepler-18 star has a mass of 0.97 M_☉, a radius of 1.1 R_☉, an effective temperature of 5345 K, and an iron abundance of [Fe/H] = +0.19. The planets have orbital periods of approximately 3.5, 7.6, and 14.9 days. The innermost planet "b" is a "super-Earth" with a mass of 6.9 ± 3.4 M_⊕, a radius of 2.00 ± 0.10 R_⊕, and a mean density of 4.9 ± 2.4 g cm^3. The two outer planets "c" and "d" are both low-density Neptune-mass planets. Kepler-18c has a mass of 17.3 ± 1.9 M_⊕, a radius of 5.49 ± 0.26 R_⊕, and a mean density of 0.59 ± 0.07 g cm^3, while Kepler-18d has a mass of 16.4 ± 1.4 M_⊕, a radius of 6.98 ± 0.33 R_⊕ and a mean density of 0.27 ± 0.03 g cm^3. Kepler-18c and Kepler-18d have orbital periods near a 2:1 mean-motion resonance, leading to large and readily detected TTVs

    Modelling the Fluid Mechanics of Cilia and Flagella in Reproduction and Development

    Full text link
    Cilia and flagella are actively bending slender organelles, performing functions such as motility, feeding and embryonic symmetry breaking. We review the mechanics of viscous-dominated microscale flow, including time-reversal symmetry, drag anisotropy of slender bodies, and wall effects. We focus on the fundamental force singularity, higher order multipoles, and the method of images, providing physical insight and forming a basis for computational approaches. Two biological problems are then considered in more detail: (1) left-right symmetry breaking flow in the node, a microscopic structure in developing vertebrate embryos, and (2) motility of microswimmers through non-Newtonian fluids. Our model of the embryonic node reveals how particle transport associated with morphogenesis is modulated by the gradual emergence of cilium posterior tilt. Our model of swimming makes use of force distributions within a body-conforming finite element framework, allowing the solution of nonlinear inertialess Carreau flow. We find that a three-sphere model swimmer and a model sperm are similarly affected by shear-thinning; in both cases swimming due to a prescribed beat is enhanced by shear-thinning, with optimal Deborah number around 0.8. The sperm exhibits an almost perfect linear relationship between velocity and the logarithm of the ratio of zero to infinite shear viscosity, with shear-thickening hindering cell progress.Comment: 20 pages, 24 figure

    A CubeSat for Calibrating Ground-Based and Sub-Orbital Millimeter-Wave Polarimeters (CalSat)

    Full text link
    We describe a low-cost, open-access, CubeSat-based calibration instrument that is designed to support ground-based and sub-orbital experiments searching for various polarization signals in the cosmic microwave background (CMB). All modern CMB polarization experiments require a robust calibration program that will allow the effects of instrument-induced signals to be mitigated during data analysis. A bright, compact, and linearly polarized astrophysical source with polarization properties known to adequate precision does not exist. Therefore, we designed a space-based millimeter-wave calibration instrument, called CalSat, to serve as an open-access calibrator, and this paper describes the results of our design study. The calibration source on board CalSat is composed of five "tones" with one each at 47.1, 80.0, 140, 249 and 309 GHz. The five tones we chose are well matched to (i) the observation windows in the atmospheric transmittance spectra, (ii) the spectral bands commonly used in polarimeters by the CMB community, and (iii) The Amateur Satellite Service bands in the Table of Frequency Allocations used by the Federal Communications Commission. CalSat would be placed in a polar orbit allowing visibility from observatories in the Northern Hemisphere, such as Mauna Kea in Hawaii and Summit Station in Greenland, and the Southern Hemisphere, such as the Atacama Desert in Chile and the South Pole. CalSat also would be observable by balloon-borne instruments launched from a range of locations around the world. This global visibility makes CalSat the only source that can be observed by all terrestrial and sub-orbital observatories, thereby providing a universal standard that permits comparison between experiments using appreciably different measurement approaches

    Palmitoylation of Desmoglein 2 Is a Regulator of Assembly Dynamics and Protein Turnover.

    Get PDF
    Desmosomes are prominent adhesive junctions present between many epithelial cells as well as cardiomyocytes. The mechanisms controlling desmosome assembly and remodeling in epithelial and cardiac tissue are poorly understood. We recently identified protein palmitoylation as a mechanism regulating desmosome dynamics. In this study, we have focused on the palmitoylation of the desmosomal cadherin desmoglein-2 (Dsg2) and characterized the role that palmitoylation of Dsg2 plays in its localization and stability in cultured cells. We identified two cysteine residues in the juxtamembrane (intracellular anchor) domain of Dsg2 that, when mutated, eliminate its palmitoylation. These cysteine residues are conserved in all four desmoglein family members. Although mutant Dsg2 localizes to endogenous desmosomes, there is a significant delay in its incorporation into junctions, and the mutant is also present in a cytoplasmic pool. Triton X-100 solubility assays demonstrate that mutant Dsg2 is more soluble than wild-type protein. Interestingly, trafficking of the mutant Dsg2 to the cell surface was delayed, and a pool of the non-palmitoylated Dsg2 co-localized with lysosomal markers. Taken together, these data suggest that palmitoylation of Dsg2 regulates protein transport to the plasma membrane. Modulation of the palmitoylation status of desmosomal cadherins can affect desmosome dynamics

    The role of sexual reproduction in the maintenance of established Zostera marina meadows

    Get PDF
    For clonal plants, the role of sexual reproduction in the maintenance of populations can vary widely. Some species are dependent on repeated seedling recruitment. For other species, interactions between adults and seedlings within existing populations can affect seedling survival and limit sexual reproduction in existing populations. Genetic studies of seagrass populations increasingly suggest sexual reproduction is important for the resilience and stability of their populations, but as of yet little observational data support these findings. Because seagrass populations provide important ecosystem services and are threatened with increasing anthropogenic impacts, understanding their reliance on sexual reproduction is evolutionarily and ecologically important. The goals of this study were to determine (a) whether seedlings of a marine angiosperm, Zostera marina, establish and recruit within existing Z. marina meadows and (b) whether interactions between seedlings and surrounding adult shoots influence the survival of established seedlings. To meet these goals, surveys estimated seedling establishment and tracked seedling survival within multiple populations. Manipulative experiments then tested the impact of neighbouring adult shoots on seedling survival and the overall trajectory of experimental plots with and without sexual reproduction. A 3‐year survey identified established seedlings within Z. marina meadows each year. Additionally, concurrent seed addition experiments indicated seed supply could influence seedling establishment rates. A survey tracking the survival of tagged seedlings, as well as the height and density of surrounding adult shoots, showed adult shoots may negatively impact seedling survival. Experiments then demonstrated that seedlings without neighbouring shoots survived longer than those with neighbouring shoots. Lastly, two transplant garden experiments comparing the survival of plots with and without seeds highlighted that seedling recruitment is likely most important to maintain bottom cover where disturbances generate gaps in the adult population. Synthesis. This study demonstrates that seedlings do establish within existing seagrass meadows, and that some survive to recruit into the adult population. Competition with existing vegetation, however, can be a factor compromising seedling survival. Sexual reproduction may thus most likely occur in, and be most important for, clonal plant populations that experience seasonal disturbance

    Investigating the role of benzodiazepines in drug-related mortality: A systematic review undertaken on behalf of The Scottish National Forum on Drug-Related Deaths

    Get PDF
    Owing to a lack of research on benzodiazepines, the National Forum on Drug-Related Deaths commissioned work addressing why benzodiazepines are common in DRDs and what role they play in such deaths, particularly at the high doses often reported. This Report presents the findings of a systematic review of evidence in relation to the use and misuse of benzodiazepines and highlights significant gaps in knowledge
    corecore