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Abstract: 
The study describes the design and development of a single degree-of-freedom haptic robot, Haptic Theradrive, 
for post-stroke arm rehabilitation for in-home and clinical use. The robot overcomes many of the weaknesses of 
its predecessor, the TheraDrive system, that used a Logitech steering wheel as the haptic interface for 
rehabilitation. Although the original TheraDrive system showed success in a pilot study, its wheel was not able 
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to withstand the rigors of use. A new haptic robot was developed that functions as a drop-in replacement for 
the Logitech wheel. The new robot can apply larger forces in interacting with the patient, thereby extending the 
functionality of the system to accommodate low-functioning patients. A new software suite offers appreciably 
more options for tailored and tuned rehabilitation therapies. In addition to describing the design of the 
hardware and software, the paper presents the results of simulation and experimental case studies examining 
the system's performance and usability.  

SECTION 1. Introduction 
Robots have a long-term role to play in the rehabilitation of stroke survivors.1–2,3 One possible role is as a 
therapy assistant in areas away from hospitals and inpatient rehabilitation centers. By developing more 
affordable robotic-haptic-mechatronic systems, nursing homes and adult daycare centers can benefit from the 
use of robot therapy systems. For this reason, there is a trend towards creating less expensive systems that can 
achieve functional treatment outcomes. Past examples of low-cost therapy systems highlight lessons learned 
that inform the development of effective low-cost solutions for neurorehabilitation. 

Lessons Learned from Low Cost, Therapy Systems 
Lesson 1: Game therapy with low-cost systems can reduce motor impairment. Palanca was an early mechatronic 
system that automated the rehabilitation process using a game;4 it consists of a slider on a 1 m track, interfaced 
with a computer for use as a game controller. Four subjects used Palanca to play Pong, 30 minutes per day, five 
days per week, for a total of 13 sessions; overall subjects showed significant functional improvements of the 
impaired arm. 

Lesson 2: Low-cost force-feedback robotic systems can be effective and elicit increased impaired arm use, 
especially in training higher functioning subjects with more strength. Driver's SEAT, developed by Johnson et al.,5 
introduced a low-cost driving simulator interface for rehabilitation robots. It uses a force-feedback split-steering 
wheel with a force sensor for each hand that enables the robot to respond differently to force inputs from each 
hand. In this case, the robot resists forces applied by a stroke patient's unimpaired arm, forcing the patient to 
use the impaired arm to assist in the completion of steering tasks. Eight stroke subjects tested the system. Low 
functioning patient had the most difficulty learning from the force cues and tended to fight the wheel especially 
in wheel positions that required them to rotate against gravity. 

Lesson 3: Commercial force-feedback systems can be used as meaningful assessment tools; performance 
metrics derived from their use are sensitive to motor function level. JavaTherapy, the TheraJoy system and 
UniTherapy software were developed to investigate the use of commercial force feedback gaming joysticks as 
therapy robots in an under-supervised environment.6–7,8 In,7 Joysticks were used to perform positioning and 
tracking exercises with the UniTherapy software, a web-based interface that allows both the therapist and the 
patient to design and execute tracking exercises.8 Force feedback was used to provide assistive or resistive 
forces to the patient during the execution of movements. Sixteen high- and low-functioning stroke subjects and 
eight unimpaired subjects performed exercise with TheraJoy/UniTherapy. Subject performance on exercises 
with UniTherapy was calculated using root-mean-square (RMS) tracking error, percentage of time on target, and 
mean time to target.8 The system distinguished between functional levels. 

Lesson 4: Low-cost therapy systems suffer from several drawbacks. One challenge is posing interesting tasks in 
training stroke survivors. Another challenge is faced in training very low functioning subjects with severe 
hemiparesis. The inability to create adequate force-feedback to assist the impaired limb and the inability to 
adapt to the non-uniform strength needs across the task space limit the effectiveness for low-functioning stroke 
survivors. 



The next section details challenges encountered in the early use of TheraDrive, a low-cost computer-aided 
robotic system for stroke therapy. The above lessons including those learned from using Theradrive lead to 
design requirements for a low-cost, haptic version of Theradrive. 

Lessons Learned from Low Cost, Force-Feedback and Game Therapy with TheraDrive 
TheraDrive builds on the successes of Driver's SEAT and TheraJoy, using off-the-shelf force feedback steering 
wheels (Logitech Wingman) as therapy robots with a single degree-of-freedom.7–8,9 The steering wheel is 
mounted on a tilting frame (0-90 degrees) and then to a height adjustable frame (0.45-0.81 m). By moving the 
robot from front to side and adjusting the angle of the wheel forces, the upper limb is used in different planes of 
motion. A crank handle, which the patient grips, is mounted to the wheel. Fig. 1 shows the Theradrive set-up 
where a subject is shown seated in the side drive mode. 

  
Fig. 1. Original TheraDrive uses commercial force-feedback steering wheel from Logitech.  

Rote or fun therapy with TheraDrive is designed to increase the range of motion (ROM) of the elbow in 
flexion/extension and the shoulder in flexion/extension and internal/external rotation. For rote therapy, the 
patient is presented with a point-to-point positioning task or a trajectory-following task by the UniTherapy 
software program. The wheel is used to move a cursor to a specified point or to guide the cursor along a moving 
path. The therapist can select from a large array of point layouts and trajectory shapes to adjust the task 
difficulty to the ability of the patient. Fun (or game) therapy involves having the patient play a computer game 
using the wheel as a controller. 

Assistive or resistive forces can be generated and the magnitude of these forces is set by the therapist before 
each exercise. This assistance/resistance usually takes the form of a virtual spring that attracts/repels the 
patient from the target position, but it can be changed to emulate a mass, a damper, or random perturbations. 

The TheraDrive system was evaluated with 10 subjects, who underwent 24 1-hour training sessions over six to 
eight weeks.9 Subjects were divided into two groups: rote therapy only and game therapy only. Subjects were 
evaluated using metrics including the Fugl-Meyer scale and the Ashworth test for spasticity. Both groups showed 
improvements in motor function and decreases in spasticity, but the sample size was too small to determine 
statistical significance. The game-based therapies enhanced the motivation and engagement of patients and 
resulted in a slight increase in functionality gain over simple tracking and positioning exercises. However, several 
limitations were observed. 
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Some subjects needed more assistance to complete tasks than the system could provide. One stroke survivor in 
the pilot study was unable to use his hand for grasping and had very little arm movement. He relied on a support 
sling for his forearm and upper arm to perform the exercises. This underscored the need to improve the wheel 
interface to provide better support for low-functioning stroke survivors who have difficulty with hand 
opening/closing and difficulty supporting the forearm against gravity. 

The game controllers used in the TheraDrive system do not perform as desired. The maximum force-feedback 
moment produced by the wheel is not sufficient and can be overcome by some patients. The small brushed DC 
motor driving the wheel is underpowered, supplying 1.5 N-m of torque at the end-effector.5 This means that the 
wheel cannot be used to build strength in all patients or to emulate a rigid constraint. Another difficulty with the 
wheel is its inability to withstand off-axis forces and moments. Uncoordinated patients often exert lifting or 
bending forces on the wheel. 

The wheel uses plastic-on-plastic bushings (not roller bearings), shortening its already short wear life even 
further due to increased loading on its surfaces. The sliding surfaces produce a significant amount of wear 
debris, which embeds itself between the teeth, causing damage to the molded plastic gears. The gears have 
considerable backlash and compliance, both of which increase with wear. The backlash creates a dead zone 
where the force feedback does not influence the wheel's motion. Several Logitech wheels wore out over the 
course of the pilot study as a result of the large forces exerted in the normal and tangential directions. 

Patient-specific adaptive control is an important feature that the TheraDrive system lacks. Patients experience 
differing levels of impairment at different points in their range of motion, and ideally the controller would 
account for this to deliver personalized therapy. The current controller is only able to simulate a constant 
stiffness linear spring. This means that during an exercise, patients can move the wheel with great difficulty at 
some points along its travel and with relative ease at other points. A controller that adapts to each patient's 
impairment, based upon range of motion, torque, and speed is needed. 

Requirements for the Haptic TheraDrive 
To circumvent the limitations of the TheraDrive system, a new Theradrive robot, called Haptic Theradrive (Fig. 
2), has been developed. The new system functions as a more powerful “drop-in replacement” for the Logitech 
wheel that can safely exert larger forces on the patient during therapy. It thus extends its functionality to 
accommodate low-functioning patients. Key design requirements include: 

 
Fig. 2. Haptic TheraDrive uses custom force-feedback crank and fits into the TheraDrive frame to allow use of 
the crank in front drive or side drive configurations. 



• The “drop-in replacement” is a computer-controlled force-feedback robot that must fit into the existing 
Theradrive system and be able to mount to the adjustable frame in front and on the sides, allowing 
exercises to be performed in different planes. 

• The robot must be low-cost to maintain the affordable theme (less than $3,000 USD). 
• The robot must support torques on the crank larger than 25 N-m (220 in-lb). This value was determined 

from preliminary work with Driver's SEAT5 where it was found that low functioning subjects could, with 
trunk involvement, overpower a tangential resistance force of 50 N. 

• The controller must be patient-specific and adapt to forces at the crank to accommodate a variety of 
stroke patients, especially low-functioning patients with motor weakness and poor coordination. 

• The robot must be backdrivable and operate safely (that is, be torque limited). 
• The forces on the crank arm of the robot must be measurable. 

 
Requirements 3-6 represent key advancements over the original Theradrive system. Due to stronger actuation, 
higher assistance/resistance forces can be applied and done so safely using a new compliant torque limiter. A 
new crank handle measures tangential and normal forces (using a custom force sensor) during steering and 
allows for a wider range of motion. Adaptive control algorithms afford more responsive to the level of 
impairment and motor performance. 

The Haptic Theradrive system (Fig. 2) trains subjects in similar ways as the earlier Theradrive system. The 
therapy goal is to improve range of motion and strength in the elbow and shoulder by having subjects practice 
tracking tasks with the robot in different configurations resulting from adjusting the height of the frame, angle 
of the robot, and the level and strategy of force-feedback. 

Achieving High-Forces and Compliance 
Other haptic robot systems have been proposed for stroke therapy which are able to generate higher forces 
during training to support more impaired stroke survivors.10–11,12 However, the issue of ensuring that the human-
subject interaction is compliant and safe despite high forces is a matter for research. 

Achieving high forces and safe human-robot interactions with impaired subjects is not trivial. Collisions between 
a stiff robot and a human can cause injury to the human and potentially damage the robot. To ensure safe 
human-machine interaction, robot actuators must have some amount of compliance. Compliant actuation is a 
sharp departure from that used in industrial robotics, where robots and actuators are made with near infinite 
stiffness. Van Ham et al. describe several strategies of producing a compliant actuator.14 The simplest suggested 
method is a series elastic actuator (SEA), consisting of a stiff actuator in series with a compliant element such as 
a spring. The performance of this actuator is limited because the stiffness cannot be adapted to different 
operating conditions without increasing the complexity of the control law. With variable stiffness, the compliant 
element of a SEA is no longer passive as the actuator stiffness is partially governed by the controller. 

Variable-stiffness (VS) actuators overcome this limitation by introducing a second degree-of-freedom that 
controls the stiffness of the joint. One method uses mechanically-controlled stiffness, where the actuator 
stiffness is adjusted by moving the compliant element. The VS joint developed by the DLR in Germany is an 
example.15 It consists of rollers pressed against a cam by a set of springs. The position and stiffness of the joint 
are controlled independently by a drive motor and a smaller motor that adjusts the preload in the spring. When 
the joint is deflected, the rollers are pushed up by the cam, compressing the spring. The spring restoring force 
pushes the rollers back towards the equilibrium position. Changing the shape of the cam allows for different 
spring types to be emulated, with progressive, degressive, or linear stiffness. 



In order for the new haptic Theradrive robot to apply large forces to the patient safely, a torque limiter is added 
to the robot's transmission. The transmission is also made to be compliant to protect the patient from impact 
loads during a sudden reversal of the motor or during an accidental collision between the patient and robot. 
Both of these requirements are met using a single transmission element, a compliant torque limiter that is 
essentially a cross between a drill clutch and a VS Joint. Due to this transmission element in concert with the 
motor, gear, sensors, and custom force sensor, etc., the new Haptic TheraDrive can support a low functioning 
subject. 

Achieving Force-Feedback and Adaptive Control 
Force-feedback is used to define a training environment that is appropriate for subjects at different functioning 
levels. Since safety is of utmost concern, developing a stable controller is highest priority. The goal is to minimize 
the risk of human injury from large unexpected robot movements. The design of the system must balance 
transparency and stability to achieve a stable system with a small effective inertia. 

Closed-loop control of a force feedback system can be implemented using an impedance or admittance 
approach. The strategy of coupling force-feedback with adaptive control is frequently used in rehabilitation 
robotics to permit robots to kinematically and dynamically adjust to function level and motor performance. For 
example, one is an assist-as-needed approach16 where the robot gives as little assistance as possible to get the 
patient as close to a desired trajectory as possible. This approach can be viewed as an optimization problem with 
an objective function, 

𝐽𝐽 = 𝜆𝜆1
2
𝑒𝑒2 + 𝜆𝜆2

2
𝐹𝐹2, (1) 

that is minimized, reflecting a weighted sum of patient error 𝑒𝑒 and assistive force 𝐹𝐹. Solving this optimization 
problem yields the desired assist-as-needed control law. However, solving this problem requires a priori 
knowledge of the relationship between assistance and error. For this reason, this strategy may work best with 
model-based controllers. This minimization strategy was used by Reiner et al. in an assisted gait study. By 
adaptively scaling the reference leg trajectory, a new commanded leg trajectory was created that fit within each 
subject's walking speed and range of motion and had the same shape as a healthy gait trajectory.17 

Adaptive control can also be used to alter the difficulty of an exercise based on subject performance. Several 
strategies exist from tuning the tracking task variability to tuning the field strength based on the subject's spatial 
or temporal performance error. For example, the Wrist-Robot developed by Hesse et al. implemented this 
adaptive strategy to tune the difficulty level alongside a nonadaptive assist-as-needed controller.12 With this 
robot subjects tracked oscillating trajectories in the three rotational degrees-of-freedom of the wrist. The 
assistive controller created a virtual quadratic spring that attracted the subjects to the desired wrist orientation. 
After each period of oscillation, the adaptive controller incremented the oscillation frequency while 
simultaneously decrementing the frequency by an amount proportional to the mean absolute tracking error 
over the previous period of oscillation. 

A slightly different strategy was adopted by Columbo et al.18 Here the level of assistance during reaching tasks 
was modified based on prior training task performance and decisions of the therapist based on difficulty levels 
during the training. An adaptive strategy emulated the decision-making process of a trained physical therapist, 
allowing the robot to select tasks with a subject specific level of assistance. 

Vergaro et al. and Casadio et al.19,20 directly modified the assistive field for a planar robot based on tracking error 
and movement time. The tracking exercises consist of following a continuous path divided into segments. An 
assistive force field is rendered to attract subjects to the path, but it does not impose any constraint on velocity 



along the path. The subject's tracking error and movement duration for completed segments along the path are 
measured. If both of these performance metrics are less than pre-defined thresholds, the magnitude of the 
assistive force field is decremented. This implements “assist-as needed” control by gradually eliminating 
assistance that is not necessary. 

In our study, we focus on developing an adaptive strategy that improves upon the a priori tuning of spring 
resistance or assistance employed in TheraDrive. The original TheraDrive used impedance control (in which force 
is a function of position and its derivatives). Impedance control is also used in the new Haptic Theradrive in 
conjunction with an adaptive control strategy to enable the controller to respond to the subject's functional 
level and control effort during tracking. 

The following sections describe:21 1) the mechanical, electrical, and software design of the new Haptic 
Theradrive system meeting the above requirements, and 2) simulation and actual experiments with two human 
subjects (1 able-bodied and 1 low-functioning) to evaluate the feasibility of the system. The potential benefits of 
this design for home therapy are also discussed. 

SECTION 2. Haptic TheraDrive Design Features 
Achieving Increased Forces with a Low-Cost Mechanical and Electrical Design 
An actuator that can output mechanical power of the same order of magnitude as the human arm would fulfill 
the first specific aim and provide patients with large supportive forces. Due to budget and weight constraints, 
the motor selected was an aftermarket treadmill motor (Turdan Industry C9J06J). It is a 2-pole brushed DC 
motor rated at 2,175 W (2.9 HP) at 70 percent duty cycle with a maximum speed of 8,000 rpm and with 
windings rated for 130 V. Motor constants are back emf constant, 𝑘𝑘𝑒𝑒 = 0.155 V/rad/s, and torque 
constant, 𝑘𝑘𝑇𝑇 = 0.155 N-m/A. Although the motor is rated for rotation in one direction only, its windings and 
commutator are symmetrical, so it achieves the same performance in both directions. The motor is 
overpowered for this application, but through the servo amplifier's voltage/current limiters and a custom 
mechanical torque limiter, the maximum mechanical power delivered to the patient is 950W (1.27 HP, that is, 
400 in-lb at 200 rpm). A maximum output torque of 45 N-m (400 in-lb) translates to a linear force at the end 
effector of 222 N (50 lb), a value on the same order of magnitude as the linear output force of the human arm at 
the hand. 
 
Coupling the motor to the end effector is a planetary gearbox (Anaheim Automation GBPH0602-NP040) with a 
40:1 gear reduction ratio. This reduces the maximum end effector linear velocity to 4.3 m/s (14 ft/s), about triple 
the speed of a normal reaching movement. A planetary gearbox was selected over a harmonic drive because the 
planetary gearbox is more easily backdriven, allowing for smoother haptic interaction. A flexible spider coupling 
was added between the motor's output shaft and the gearbox to reduce shock loads on the gearbox and 
lengthen the expected life of the gears. 

Driving the motor is a plug-in analog PWM servo amplifier (Advanced Motion Control, model 30 A 20AC) 
interfaced with a DAQ system. Built-in voltage and current limiters allow the amplifier to limit the maximum 
velocity and torque of the motor. A 1,000-line hollow-shaft rotary optical encoder (Red Lion, model ZPJ1000A) 
was mounted directly to the output shaft of the robot. With x4 decoding (four counts per quadrature cycle), the 
resolution of measured end effector position is 32 counts per cm (80 counts per in.). The index of the encoder is 
aligned with the center of the robot workspace, where the crank arm is vertical, corresponding to the starting 
position of every exercise trajectory. Encoder signals are filtered digitally by the encoder DAQ board 
(Measurement Computing, QUAD-04). 



The motor and gearbox are mounted to an aluminum chassis. The chassis mounts to the same frame as the 
original TheraDrive using two clamps. The robot in the therapy environment is pictured in Fig. 2. Like the original 
TheraDrive, the Haptic TheraDrive robot can be reconfigured on the TheraDrive mounting frame. By adjusting 
the height of the frame and the position of the robot, the system can be fitted to each patient. The workspace of 
the robot is a 270-degree circular arc, with a radius of 200 mm (8 in), corresponding to the path of the crank. 
Mechanical stops prevent the crank from making multiple revolutions to avoid damage to the wiring. Compared 
to the Logitech wheel, the haptic robot has double the workspace radius and 50 percent more angular travel. 
Motions targeted by therapy with the system are elbow flexion/extension, shoulder flexion/extension, and 
internal/external shoulder rotation. 

Custom Compliant Torque Limiter 
The custom mechanical compliant torque limiter consists of a crown cam, splined to the input shaft, and a cam 
follower keyed to the output shaft, see Fig. 3. The cam is held against the follower by a spring, but it is free to 
slide along the spline of the input shaft. Thrust bearings are placed on both sides of the limiter to take thrust 
loads off of the bearings in the gearbox and output shaft. Deflecting the output shaft causes the cam to 
compress the spring, generating a restoring torque. This creates a torsional spring from a linear spring, and the 
stiffness profile of the torsional spring can be altered by changing the shape of the cam surface. In an overload 
condition, the cam leaves the followers, disengaging the output shaft. 

 
Fig. 3. A close up of the robot internal components showing a custom compliant torque limiter (top). The 
compliant torque limiter is shown in three stages in the CAD drawing: Equilibrium, Transmitting torque and 
Over-torque (from left to right). The red line indicates where the component appears. 

For an angular deflection of 𝜃𝜃, the restoring torque T (𝜃𝜃) is defined by the relationship 
 

𝑇𝑇(𝜃𝜃) = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑟𝑟𝑐𝑐(𝐹𝐹𝑘𝑘𝑘𝑘 + 𝑘𝑘𝑘𝑘(𝜃𝜃)), (2) 

where 𝑘𝑘(𝜃𝜃) defines the shape of the cam surface, 𝑟𝑟𝑐𝑐 is the cam radius, 𝑘𝑘 is the linear spring stiffness, and 𝐹𝐹𝑘𝑘𝑘𝑘 is 
the preload in the spring. The preload in the spring is adjusted manually using a telescoping shaft collar to 
compress the spring. The torque limits are determined in part by the depth and slope of the cam profile and can 
be adjusted by varying the preload in the spring. The cam shape chosen for this robot is parabolic. With a 
parabolic cam path, increasing the preload in the spring increases the torsional stiffness. When the spring 
preload is low, this provides patients who cannot handle large interaction forces a softer robot to reduce 
discomfort. When the spring preload is high, the robot is able to exert larger forces at the end effector without 
excessive output shaft deflection. The equation for restoring torque with a parabolic cam path of z(𝜃𝜃) = 𝑎𝑎𝜃𝜃2 
becomes 



𝑇𝑇(𝜃𝜃) = 2𝑎𝑎𝜃𝜃𝑟𝑟𝑐𝑐𝐹𝐹𝑘𝑘𝑘𝑘 + 2𝑘𝑘𝑎𝑎2𝑟𝑟𝑐𝑐𝜃𝜃3. (3) 

The cam motion is assumed to be quasi-static, as the spring force is much greater than the inertia of the moving 
parts. This assumption holds true except when the cam leaves the overloaded condition, moving from the flat 
surface to the steep parabolic surface. This is acceptable because exercises with the robot are aborted if the 
torque limiter is overloaded (Fig 3b). 

To size the cam to a chosen spring, five parameters must be known: the minimum torque limit, 𝑇𝑇min; the 
maximum torque limit, 𝑇𝑇max; the spring stiffness, 𝑘𝑘; the spring force at maximum compression, 𝐹𝐹max; and the 
desired cam radius, 𝑟𝑟𝑐𝑐. The cam profile is parabolic, defined as of 𝑘𝑘(𝜃𝜃) = 𝑎𝑎𝜃𝜃2, and the profile depth is 𝑘𝑘max. 
 
The maximum angular deflection before the follower leaves the cam then becomes 

𝜃𝜃max = �𝑘𝑘max/𝑎𝑎, (4) 

and the cam slope at this point is 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑max

= 2�𝑎𝑎𝑘𝑘max. (5) 

The minimum torque limit is realized when there is zero preload in the spring, giving the equation 

𝑇𝑇min = �2�𝑎𝑎𝑘𝑘max�(𝑟𝑟𝑐𝑐)(𝑘𝑘𝑘𝑘max). (6) 

The maximum torque limit is realized when the spring is at full compression when the follower leaves the cam, 
giving the equation 

𝑇𝑇max = �2�𝑎𝑎𝑘𝑘max�(𝑟𝑟𝑐𝑐)(𝐹𝐹max − 𝑘𝑘𝑘𝑘max). (7) 

This creates a system of two equations which can be solved for 𝑎𝑎 and 𝑘𝑘max to determine the cam shape. A final 
check must be done to verify that the determined cam shape will fit the allotted space without overlapping itself 
or creating thin features that would fail under load. If this check is failed, a different spring must be chosen. 
The spring for the torque limiter has a stiffness of 144 N/cm (82 lb/in) and a load of 609 N (137 lb) at full 
compression. Minimum and maximum torque limits were chosen as 𝑇𝑇min = 9 N-m (80 in-lb) and 𝑇𝑇max = 45 N-m 
(400 in-lb), respectively, and the cam radius was chosen to be 3.8 cm (1.5 in). With a crank arm radius of 20 cm 
(8 in), these torque limits correspond to 44 and 222 N (10 and 50 lb) of tangential force at the end effector, 
respectively. Solving the above equations yields a cam profile of 𝑘𝑘(𝜃𝜃) = 14.8𝜃𝜃2cm (5.81 𝜃𝜃2 in) with a depth 
of 𝑘𝑘max = 10.6 mm (0.418 in). Since the center of the cam follower must trace this profile, the physical cam 
surface is offset normal to the cam profile by the radius of the follower, 6.4 mm (0.25 in) in this case. The cam 
profile is repeated four times around the cam circumference in order to quadruple the mechanical strength of 
the torque limiter by using four cam followers and to balance the distribution of the spring force. 
 
The minimum and maximum torque limits were tested by hanging barbells from the end effector with the crank 
arm below the horizontal position. The motor shaft was turned manually until either the crank arm rose past the 
horizontal position or the torque limiter disengaged. If the torque limiter did not disengage, the torque limit was 
not exceeded. With the torque limiter set to its minimum limit, the crank was able to lift a weight of 44 N (10 lb) 
but not a weight of 66 N (15 lb). With the torque limiter at its maximum limit, the crank was able to support a 
weight of 200 N (45 lb) but not a weight of 222 N (50 lb). This showed good agreement with the theoretical 



values of 10lb (44N) at the minimum limit and 50lb (222N) at the maximum limit. Table 1 summarizes the cam 
parameters. 

Table 1 Cam Design Parameters 

 
 

Custom Force Sensor in Crank Handle 
To measure the human-robot interaction forces, a load cell was built into the crank handle. These interaction 
forces are needed to close the impedance control loop and for data collection during experiments/exercises. 
The compliant element of the drivetrain could not be used to measure torque because its stiffness is variable 
and nonlinear, and thus a load cell is used. The load cell is composed of a cantilever beam with eight strain 
gauges (Vishay Micro-Measurements, 062LW) mounted to the crank arm. The beam has a circular cross-section 
and a conical taper, narrowing towards the free end, to maximize strain in areas under low load. This, in turn, 
increases the sensitivity of the load cell by maximizing the strain experienced by each strain gauge. The handle 
grip is fitted around the load cell and rotates freely on bearings. Fixing the load cell to the arm rather than the 
grip allows forces to be measured in the radial-tangential coordinate system of the crank arm and simplifies the 
conversion of interaction forces to joint-space torque. Strain gauges are mounted around the circumference of 
the beam at 90-degree intervals at two points along its length, as shown by the alignment marks drawn in Fig. 
4a. Diametrically opposed gauges are wired in a half-bridge configuration and measure bending strains at two 
points due to moments about the radial and tangential axes, for a total of four measured strains. The half-bridge 
configuration provides temperature compensation. 

 
Fig. 4. a. Custom crank handle with strain gauge mounting at the cross line and b. Illustration of how shear and 
moment reactions at the end of the beam are related to the moments measured at the gauges. 
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The strain gauge bridge amplifier is designed around the Burr-Brown INA125 instrumentation amplifier with 
precision voltage reference, a chip designed to power strain gauges and amplify strain gauge signals. Four strain 
gauge half-bridges in the load cell produce four voltage signals proportional to strain along specific axes at 
specific points. 

The four strains are used to calculate bending stresses, bending moments, and shear and moment reactions at 
the fixed end of the beam. The interaction force is converted to joint-space torque by multiplying the tangential 
shear reaction force by the crank arm radius, and this is used as the feedback to the impedance controller. The 
other three reactions are used only for clinical data collection. Calculation of the shear and moment reactions at 
the fixed end of the beam can be illustrated with a moment diagram (bending moment plotted as a function of 
position along the beam, as in Fig. 4b. Measured strains at the tangential gauge bridges are converted to 
bending moments using Hooke's Law and bending stress equations. A straight line is drawn through these two 
points, and the slope of the line is equal to the shear reaction, and the value of the line at the fixed end is the 
moment reaction. This procedure is repeated for the radial gauges. 

The load cell was calibrated by clamping the fixed end to a workbench and hanging weights (8.9 to 53.4 N) from 
points along the length of the beam (25 to 200 mm from end) and then recording the voltage outputs of the 
strain gauge bridge amplifier. From the value of the weight and its distance from the fixed end of the beam, the 
shear and moment reactions could be calculated. Least-squares planar regressions were performed to find the 
shear and moment reactions, each as a function of the two amplifier outputs after offset nulling. The correlation 
squared was greater than 0.99, indicating a very good fit of the plane to the data. The reactions for the 
tangential direction are 

𝑉𝑉 = 94.26𝐸𝐸𝑝𝑝 − 292.7𝐸𝐸𝑑𝑑𝑁𝑁, (8) 

𝑀𝑀 = 0.802𝐸𝐸𝑝𝑝 − 10.91𝐸𝐸𝑑𝑑𝑁𝑁 ⋅ 𝑚𝑚, (9) 

where 𝑉𝑉 and 𝑀𝑀 are the shear and moment reactions, respectively, and 𝐸𝐸𝑝𝑝 and 𝐸𝐸𝑑𝑑 are the voltage outputs of the 
amplifier from the bridges proximal and distal to the fixed end of the beam. Force and moment data for loads 
exceeding 53.4 N (12 lb) must be extrapolated from this data. This was deemed acceptable because strain 
gauges are highly linear force sensors when mounted to linear elastic materials, and the beam was designed not 
to undergo plastic deformation until 445 N (100 lb) was applied to the tip. 

Software Design 
Control Design 
The Haptic Theradrive robot is controlled using a dedicated computer running Mathworks Simulink xPC Target 
OS for real-time control and data acquisition. This PC is fitted with two DAQ boards to read sensors and 
communicate with the servo amp: an encoder board from Measurement Computing (PCI-QUAD04) and a 
multipurpose board from National Instruments (NI PCI-6251). A host computer running Matlab interfaces with 
the target computer through an ethernet connection to upload executable binaries and display the patient 
interface. 

Control of the robot is achieved through three loops, all running at a sample rate of 1,000 Hz to allow for smooth 
controller response. The control architecture is illustrated in Fig. 5. The innermost control loop is the impedance 
proportional-integral-derivative (PID) controller. This controller was designed and tuned in simulation using 
Matlab's Control System Toolbox. The topology of the impedance controller is PID with feedforward, taking a 
force command and force feedback at the input and producing a motor current signal at the output. The 
feedforward path consists of a constant multiplied by the signum of the end effector velocity in order to cancel 



the effects of Coulomb friction. After tuning in simulation, the PID controller gains found were used as a starting 
point for manual tuning of the impedance controller on the real robot. The PID controller gains used, in current 
output per force error, are 𝑘𝑘𝑝𝑝 = 0.0760 A/N, 𝑘𝑘𝑖𝑖 = 0.645 A/N-s, and 𝑘𝑘𝑑𝑑 = 0.000897 A-s/N. The feedforward 
term is 0.616 A. Stability of the controller was analyzed using root loci. The z-domain poles of this controller lie 
within the unit circle, so the controller is stable, and the impedance loop as a whole is stable because the 
mechanical plant (mass-spring-mass) is inherently also stable.  
 

 
Fig. 5. Control flow chart. 

The intermediate loop is the assistive/resistive controller, which renders a force field in the robot's workspace. 
The controller divides the workspace into 17 regions, spaced 1/16th of a revolution apart. Each region has a 
value assigned to it to define the assistive/resistive stiffness of the robot at that location, with negative 
stiffnesses being assistive and positive stiffnesses being resistive. It is necessary to implement position-
dependent stiffness because stroke patients usually have inconsistent abilities in the range of motion of their 
impaired arm. The stiffnesses between regions are interpolated to produce smooth transitions between regions 
of different stiffnesses. Assistive stiffness is rendered as a linear spring pulling the patient towards the target 
end effector position with a small damper added to reduce overshoot. Resistive stiffness is rendered as a linear 
spring that repels the patient from the target position, creating an unstable system that the patient must 
stabilize. For patients requiring assistance, the stiffnesses are either zero or negative so the patient only receives 
assistance. The opposite is true for patients requiring resistance. 

The outermost control loop is the adaptive controller. It uses a strategy similar to that used in12 and18 but runs 
continuously instead of in discrete steps. The controller evaluates patient performance in real-time and 
continuously adapts the stiffness of the robot to the patient's ability. Since patient performance depends in part 
upon the amount of assistive/resistive stiffness, altering the stiffness will cause a change in patient 
performance. Patient performance is quantified as the root-mean-square trajectory tracking error over the 
previous 3 seconds, a metric chosen because it was used to quantify subject performance in the original 
TheraDrive. This error is compared to a desired error of 0.25 rad (2 in or 51 mm of arc length), a value 
corresponding to the width of the target that the patient tracks. A nonzero tracking error is desired because this 
maintains difficulty of exercises. If the desired tracking error were zero, the robot would always provide 
maximum assistance to every patient, and if the desired tracking error were too large, the robot would 
maximum resistance to patients. Stiffness values in a quadrant centered around the end effector are adjusted 
proportionally to the difference between actual and desired tracking error, essentially establishing a 
proportional control loop around the gains of the assistive/resistive controller. Over time, the adaptive 
controller shapes the stiffness profile to suit the patient's ability level, ensuring that exercises will be difficult but 
doable and that the patient will not be assisted more than is necessary. “Difficult but doable” means that 
patients should be presented with a challenge sufficient to maintain motivation and a moderate degree of 
exertion, but the challenge should not be so great as to cause patients to become frustrated or to fail to 
complete exercises. 

For testing purposes, the adaptive controller has several operating modes that disable some or all of its features, 
allowing for specific variables to be isolated in experiments. Zero impedance mode disables all assistance and 



resistance and makes the end effector behave as if it were rotating freely. Static assist/resist modes disable the 
adaptive controller and provide a fixed stiffness. These first two modes emulate the behavior of the original 
TheraDrive system with the wheel rotating freely or with spring assist/resist, respectively, allowing for a direct 
comparison of the two systems in testing. Plain adaptive mode provides adaptive stiffness but disables position-
dependent stiffness. Position-dependent adaptive mode enables all features of the adaptive controller. Table 
2summarizes the modes. 

Table 2 Control Features 

 
 

Task Software 
The task software on the host computer is made to emulate the appearance of UniTherapy to the patient, 
allowing it to satisfy the first specific aim of creating a drop-in replacement. The interface presents the patient 
with an arrow cursor that follows the position of the end effector, seen in Fig. 6. The cursor is situated at the 
bottom of the screen, and the desired trajectory scrolls down the screen towards the cursor, presenting a blue 
box at the current target location. The cursor changes from red to green while it is within the target box. The 
framerate of this task display is approximately 33 Hz, the same as that of UniTherapy. 

 
Fig. 6. GUI of tracking task. 

The operator interface uses Matlab scripts to automate random trajectory generation and data uploading to the 
robot. Most functions can be performed with a single command at the Matlab command line. Data is 
automatically streamed via universal datagram protocol (UDP) from the robot to the host computer during 
exercises and saved to the Matlab workspace. The streamed data packets contain a time stamp, commanded 
and actual position, commanded and actual haptic interaction force, off-axis forces, and controller gains. After 
an exercise is complete, the data can be saved to a file for later analysis. 
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SECTION 3. Simulation and Human Subject Cases 
A simulation model was created based upon the characteristics of the real system, and care was taken to ensure 
the model had good fidelity to the real hardware. It models all of the major mechanical components of the robot 
as well as the robot controllers described in Table 2. A simulated human arm from another project was added to 
model the interaction between human and robot. This model was used for the initial tuning of the impedance 
PID controller and for the first experiments with the adaptive controller, discussed in the following. 

Simulation Design 
A model of the robot and human patient was written in Mathworks Matlab, Simulink, and SimMechanics to aid 
in controller design and testing without risk of injury. The crank and human arm were modeled as a four-bar 
linkage, with the motor coupled to the crank through a nonlinear spring. Parameters for the model robot, such 
as link inertia and motor torque constant, were found through characterization of the motor and through 
analysis of 3D part drawings in SolidWorks. Equations of motion were created and solved numerically within 
SimMechanics based upon the mechanical model. Using SimMechanics, all nonlinearities in the system, such as 
encoder quantization and Coulomb friction, could be modeled easily, and a more accurate model of the system 
than a linearized analytic model was produced. The human arm model was ported from another computational 
model created by Formica et al. for use with the MIT-Manus robot.22 

This model simulates the dynamics and control of the human arm with or without stroke impairment. It is a 
planar model consisting of a forearm/wrist segment, an elbow joint, an upper arm segment, and a fixed 
shoulder joint. The forearm/wrist segment is 35cm long with a mass of 1.54 kg, and the upper arm is 25 cm long 
with a mass of 1.96 kg, corresponding to metrics of a human of average height and weight. The simulation 
model is shown graphically in Fig. 7. A trajectory planner and joint-space proportional-derivative (PD) controller 
are used to model human control of the arm. 

 
Fig. 7. Simulated model is a graphical representation of the simulation model. The crank arm is on the left and 
the human forearm and upper arm is on the right. For the moderate subject in (13): a = 0.25 and b = 1. 

The PD controller is of the form 
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where 𝑢𝑢 is the position error vector in rad in joint space and 𝑇𝑇 is the joint torque output vector in N-m. The PD 
controller gains are based on the stiffness and viscoelasticity of the average human arm. The resulting controller 
gains have cross-coupling terms that reflect mono- and bi-articular muscle control. The gains in (12) are 𝑃𝑃𝑒𝑒𝑒𝑒 =
8.67 Nm/rad, 𝑃𝑃𝑃𝑃𝑒𝑒 = 2.83  Nm/rad, 𝐷𝐷𝑒𝑒𝑒𝑒 = 0.76 Nm/rad/s, 𝐷𝐷𝑠𝑠𝑒𝑒 = 0.18 Nm/rad/s, 𝑃𝑃𝑒𝑒𝑠𝑠 = 2.51 Nm/rad, 𝑃𝑃𝑠𝑠𝑠𝑠 =
10.8 Nm/rad, 𝐷𝐷𝑒𝑒𝑠𝑠 = 0.18 Nm/rad/s and 𝐷𝐷𝑠𝑠𝑠𝑠 = 0.63 Nm/rad/s. 

The MIT-Manus arm model also contains a trajectory planner that simulates human trajectory planning in point-
to-point movements, but this part of the model was not used because exercises consist of trajectory tracking 
rather than point-to-point movements, and trajectories are already defined in trajectory tracking tasks. Stroke 
impairment is simulated in the Manus model by perturbing the desired arm trajectory with a triangle function, 
creating a new trajectory that deviates from the ideal trajectory to simulate the disjointed piecewise trajectories 
taken by a stroke-impaired arm. For example, if the ideal trajectory were defined as 𝜃𝜃(𝑡𝑡), the perturbed 
trajectory, 𝜃𝜃𝑝𝑝(𝑡𝑡), would be defined as 

𝜃𝜃𝜃𝜃(𝑡𝑡) = 𝜃𝜃(𝑡𝑡) + 𝑎𝑎 �𝜃𝜃(𝑡𝑡)𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑏𝑏
2
� , (12) 

where 𝑎𝑎 and 𝑚𝑚 define the amplitude and period of deviation, setting the severity of the simulated impairment. 
The mod operator gives the remainder of the devision. The arm then attempts to follow this perturbed 
trajectory, while the robot tries to follow the unperturbed trajectory. The trajectories used in exercises are a 
sum of four sine waves of different frequency and phase that create a pseudorandom smooth path. 

Experiment Design and Hypothesis 
To verify that the adaptive controller was able to adapt properly to patients with varying levels of impairment, 
simulations of the system were run with the MIT-MANUS human arm model [22]. The first simulation was run 
with the unimpaired arm model to verify that the adaptive controller was stable, i.e., the resistive stiffness 
would settle to a steady-state. An exercise was run for 10 minutes of simulation time, in position-dependent 
adaptive mode starting with assistive/resistive gains of zero, and the controller was allowed to adapt to the 
arm's performance. The average assistive/resistive gain as a function of time was recorded for the duration of 
the simulation. This procedure was then repeated for a simulated stroke patient to verify that the adaptive 
controller would be stable when adapting to a stroke-impaired subject. It was expected that the controller gain 
would show a first-order decay towards a steady-state value, with the controller providing resistance to the 
unimpaired and assistance to the impaired arm model. A first-order response from the adaptive controller was 
expected because it is a simple proportional controller with a first-order transfer function. 

To verify that the position-dependent aspect of the adaptive controller functioned properly, the stroke arm 
model was used.22 The perturbation function used to simulate impairment was set such that the maximum 
perturbation would occur at ±1 rad, where an angular position of 0 = rad corresponds to the crank pointing 
straight up. A simulated exercise was run for ten minutes of simulation time, starting with an assistive/resistive 
gain of zero, and the controller was allowed to adapt to the arm's performance. Assistive/resistive gain as a 
function of end effector position was recorded after the simulation was completed. The plot of gain versus 
position was expected to show peaks in assistive gain at ±1 rad, where the tracking error of the arm was highest. 

To compare simulation results to real tracking, two subjects were asked to use the system: one able-bodied 
subject without neurological injury and another stroke subject with a low to moderate function as defined by a 
upper limb Fugl-meyer score of 29.23 Subjects were seated at the Haptic TheraDrive and were asked to track a 
sinusoid in the zero-impedance mode and the position dependent adaptive mode (Table 2). The sinusiod was a 
sum of four sinusoids, centered about the vertical crank position, of amplitude 0.5 rad and frequencies of 0.5, 
1.0, 1.5 and 2.0 rad/s (Fig. 6). The relative phases of the sinusoids were randomized for each exercise to reduce 
learning effects. The RMS error was used to measure accuracy compared to the simulation study. 

https://ieeexplore.ieee.org/document/#deqn11


SECTION 4. Results 
Simulated Healthy versus Stroke Subjects 
The baseline performance of the healthy and stroke patient models in a sine tracking exercise is displayed in Fig. 
8a. Both models tracked the trajectory with the robot controller running in zero-impedance mode. The healthy 
model tracked the trajectory with little error, but the stroke model had large errors at the points where the 
spatial perturbation is at a maximum. 

 

Fig. 8. a. Simulated tracking task with Healthy Model and Stroke Model and b. Rendered Stiffness being adapted 
to healthy subject performance. c. Simulated Healthy patient's performance before and after gains are being 
adapted. d. Rendered stiffness adapting to simulated stroke patient over time. More negative values indicate 
more assistive gains.  

Fig. 8b shows the adaptive controller responding to the performance of a simulated healthy patient. A sine 
tracking exercise was run for 10 minutes of simulation time, and the resistive stiffness, averaged over the 
workspace, was plotted versus time. The controller response is approximately first-order with a time constant of 
90 seconds, showing oscillations at steady state. Steady-state oscillations have the same period of oscillation as 
the sinusoidal trajectory. This was confirmed by cross correlation analysis. 

The performance of a simulated healthy patient before and after controller adaptation is shown in Fig. 8c. The 
baseline performance of the patient with zero resistance had a RMS tracking error well below the target level of 
0.25 rad, so the adaptive controller added resistance to the exercise until the target error was achieved. With 
the resistive gain adapted, the patient was still able to track the reference trajectory, but with an increase in 
error from 0.058 rad at baseline to 0.230 rad with resistance. This increase in tracking error is apparent in Fig. 
8c. 

The response of the adaptive controller to a simulated stroke patient is shown in Fig. 8d. The assistive gain is 
plotted over time during a 10-minute sine tracking exercise. The controller response shows first-order decay 
with a 90 second time constant and oscillations at steady state with the same period as the tracked trajectory 
(12.6 seconds). The RMS tracking error decreases from 0.307 rad over the first 30 seconds to 0.265 rad over the 
last 30 seconds. 

Figs. 8b and 8d show the adaptive controller modifying the stiffness of the robot to suit the ability levels of a 
simulated healthy subject and simulated stroke subject. With zero resistance, the healthy subject tracks the 
trajectory very closely, but after the adaptive controller adds resistance, the RMS tracking error increases to the 
desired level of 0.25 rad. The tracking error of the stroke subject decreased until it reached the desired level as 



the controller gains were adapted. This demonstrates the ability of the adaptive controller in simulation to 
adjust the stiffness of the robot to achieve a desired level of performance from a subject. 

Oscillations in controller gains, plotted in Figs. 8b and 8d, are caused by the shape of the trajectories the 
patients are tracking. This is because there are slight variations of difficulty in the motions that compose the 
trajectory. For example, tracking fast movements is more difficult than tracking slow movements, so changes in 
the trajectory velocity will perturb the gains of the adaptive controller. 

Performance of the position-dependent adaptive controller with a simulated stroke subject is displayed in Fig. 9. 
The triangle perturbation function used to simulate impairment was defined to have peaks at ±1 rad, causing 
maximum perturbation of the trajectory at the aforementioned peaks. A sine tracking exercise was run until the 
adaptive controller reached steady state, and the resulting gains were plotted. This graph shows two peaks 
where the assistive gain is larger (more negative): one large peak at 1 rad and a smaller, wider peak at −1.3 rad. 
These peaks correspond roughly to the locations where perturbation of the trajectory to simulate stroke was 
largest (±1 rad). 

 
Fig. 9. Position dependent gains adapting to simulated stroke patient's performance. 

Position-dependent assistive gain is important for therapy exercises with stroke patients, as they have varying 
levels of ability throughout the robot's workspace. Fig. 8e shows the assistive gain of the simulated robot plotted 
against end effector position. The peaks in the gain correspond roughly with the locations of peak trajectory 
perturbation in the stroke subject model. The peaks are of different magnitudes due to the differing mechanical 
advantage of the arm at these points. At −1.3 rad, the arm is extended and has little mechanical advantage over 
the robot, and less assistance is required to correct tracking errors. However, at 1 rad, the arm is close to the 
body, giving the patient a large mechanical advantage, so more assistance is required to correct the trajectory. 

Mechanical advantage is also the reason the peak at −1.3 rad was shifted from the expected position of −1 rad. 
The mechanical advantage of the patient is lower at the angle of −1 rad than at −1.3 rad because around −1 rad, 
there is a point where the tangent to the path of the elbow intersects with the axis of the crank, creating a 
singularity in the kinematics. At this point, the shoulder joint has zero mechanical advantage over the crank 
because it cannot exert any moment on it, putting the arm's overall mechanical advantage at a minimum. The 
arm has more mechanical advantage at −1.3 rad, so more assistance is required at this point to correct the arm's 
trajectory than is required at −1 rad. 



Case Studies 
A stroke subject's performance is shown tracking a trajectory with zero-impedance and the position dependent 
adaptive mode in Fig. 10. The stroke subject was less able to track the sinusoid than the healthy subject. This 
was reflected in the level of accuracy where RMS error for stroke survivor was greater (0.62 versus 0.2040). The 
position adaptive controller was representative of our adaptive mode; the controller further reduced the RMS 
error to 0.346. This indicates that the subject was given the assistance needed to enable tracking (Fig. 10b). The 
adaptive controller slightly increased the tracking error of the healthy subject from 0.2040 to 0.287. This is 
because the controller will work to provide more resistance to increase the tracking challenge if the subject 
tracking error was less than 0.2. Fig. 10c depicts the baseline RMS tracking error of a stroke subject during 
exercises in zero-impedance mode. Superimposed on this data is the position-dependent adaptive controller 
gain after it had reached steady state. Compared to the simulation data shown in Fig. 9, the real data in Fig. 
10c displays the same trend. At the points at which the subject has the greatest tracking error, the adaptive 
controller provides a greater amount of assistance. This is shown by the two peaks in the plot of RMS tracking 
error, which is reflected in the shape of the plot of adaptive controller gain. The peaks in adaptive gain are wider 
due to the use of a spatial smoothing window in the adaptive algorithm (this smoothing caused the two peaks to 
partially merge together). 



 
Fig. 10. abc. Stroke subject completing two modes: a) zero-impedance mode, b) an adaptive mode and c) s the 
position-dependent gains changing and adapting over time. 

SECTION 5. Discussion 
Design 
The hardware developed for the haptic robot satisfies the first goal of being a drop-in replacement for the 
Logitech wheel by mounting to the same frame and interfacing physically with human subjects in the same 
manner. The second specific aim is fulfilled by the robot's high force output, which enables the robot to provide 
assistance to subjects who are too weak or too uncoordinated to use the Logitech wheel. 

By emulating the main features of the UniTherapy software, the haptic robot's software presents subjects with 
an interface that has the same look and feel of UniTherapy, fulfilling the first specific aim. The adaptive control 
software provides more flexibility than UniTherapy in the way assistance/resistance is applied to the human 
subject, which allows therapy to be personalized to each subject; this fulfills the second specific aim of extending 
accommodations to low-functioning subjects. 



The biggest shortcoming of the haptic robot is the performance of its motor. The treadmill motor is designed to 
spin in one direction at a constant speed, and not to provide smooth motion at near-stall speeds. Because of 
this, the motor has a low number of windings on the armature, which leads to noticeable cogging effects at slow 
speeds. The low number of windings also causes the torque constant of the motor to be position-dependent, 
leading to inconsistent performance of the impedance controller. A motor designed specifically as a servo would 
offer superior performance, but budget and weight constraints did not permit such a motor to be used. 

Because the robot lacks a “dead-man” switch on the crank handle, it has no means to sense whether a user is in 
contact with the end-effector. The handle grip spins freely, so a switch cannot be installed in it without risk of 
damage to the wiring. This creates a safety concern because the impedance controller is unstable if there is 
nothing in contact with the end effector. Due to this concern, subjects wear a grasp-assist glove that prevents 
them from releasing the handle, and perform exercises under close supervision. These safety measures are not 
an ideal solution as the glove does not fit all people. It is recommended that the handle be modified to accept a 
“dead-man” switch or similar device in order to enhance the current safety measures. 

Evaluation 
The adaptive controller simulation experiments were successful in that the data recorded supports both 
hypotheses. The plots of gain over time in Figs. 8b and 8d both show a general first-order trend, neglecting the 
oscillations, and Fig. 9 shows the position-dependent adaptive controller assigning the highest gains to regions 
with the highest tracking errors. The controller also shows sensitivity to impairment level, as seen by the 
difference in steady-state gain between the healthy arm in Fig. 8a and the stroke-impaired arm is Fig. 8c. 

The first-order trend of controller gain is similar to the results seen in the Wrist-Robot experiment and other 
robot controllers.18 Subjects tracked oscillating trajectories using the robot, and the adaptive controller 
increased the oscillation frequency proportional to the subject's performance. Because of this relationship 
between performance and frequency, oscillation frequency for the Wrist-Robot is an analog to rendered spring 
stiffness in the haptic TheraDrive robot, as both these parameters modulate exercise difficulty. Wrist oscillation 
frequency with the Wrist-Robot showed the same first-order response characteristic in each of the eleven 
exercises. 

A weakness in the simulation's adaptive controller is that the assistive/resistive gain oscillates at steady state. 
These oscillations are stable, as they do not grow exponentially as the exercises progress, and they are a 
phenomenon caused by the shape of the exercise trajectory, as the two have the same period (12.6 seconds 
in Fig. 8d). A similar phenomenon was mentioned by Vergaro et al. as a frequent occurrence in continuously-
adapted controllers.18 Methods of removing these oscillations include increasing the length of the window used 
to calculate the RMS tracking error and decreasing the adaptation gain. However, both these methods slow the 
rate of adaptation and make the controller less responsive to sudden spikes in tracking error that occur when, 
for example, a stroke subject becomes stuck in one position. Ultimately, the oscillations are inseparably linked to 
the trajectory, and eliminating them would cause an unacceptable loss of controller performance. 

However, the oscillation is small enough that it is imperceptible to patients, as the exercises themselves present 
variations of force of much greater magnitude and speed than those caused by small variations of stiffness. 

Position-dependent gains developed as hypothesized. The largest assistive gains were seen in the positions 
where the simulated subject's tracking error was at a maximum, which in turn correspond loosely to the points 
where the trajectory perturbation to simulate stroke was largest. Figs. 9 and 10c shows that the position-
dependent adaptive controller fits the “assist as needed” paradigm; it is able to provide extra assistance only 
where it is necessary to maintain subject performance. 



Although it was modified to work in the haptic robot simulations, the MIT-Manus arm model still behaved as it 
did in simulations discussed by Formica et al.20 The tracking error of the arm model showed sensitivity both to 
the level of assistance provided and to the level of impairment modeled. 

The simulated stroke subject model in Fig. 8a behaves nothing like the real stroke subject in Figs. 
10a and 10b when tracking trajectories in zero-impedance mode. The real stroke shows a limited range of 
motion and a noticeable delay of movement. Spatially, the trajectory the real stroke subject follows is very 
similar to the commanded trajectory when inside the subject's limited range of motion; none of the 
perturbations present in the simulated stroke model appear in the real subject. These differences stem from the 
fact that the MIT-Manus arm model was intended to simulate stroke subjects performing point-to-point 
movements on a tabletop. The Manus simulation model imitated the zig-zag paths that real stroke subjects took 
during movements between points.21 Using this model with a crank constraint and a pre-defined trajectory did 
not produce behavior seen in real stroke subjects because the model was not being used for its intended 
purpose. The simulation had utility in validation and proof of method. There is a need to improve the model. 

SECTION 6. Conclusion 
A haptic therapy robot, Haptic Theradrive, was designed to accommodate stroke survivors with a wide range of 
functional abilities and assist them safely. A novel compliant torque limiter was implemented to allow the 
system to be used safely despite its large torque capacity. The torque limiter would be preset for the patient 
before the system could be used independently. An adaptive controller adds the ability to keep the tracking 
tasks challenging yet doable. Low functioning stroke survivors are now able to benefit from the system. 

Human subject pilot studies are being conducted to assess the utility of the various control schemes in providing 
a challenging and engaging therapy environment. From these studies, the Haptic TheraDrive will be compared to 
the original system. 
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